Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polymers with copper show promise for implanted sensors

16.03.2005


Developing chemical sensors that can be placed in the bloodstream or under the skin to continuously monitor oxygen, acidity (pH), or glucose levels is a major challenge for analytical chemists and biomedical engineers. The problem is, the body responds to these foreign objects in ways that interfere with their ability to accurately measure blood chemistry. In the bloodstream, clots form on the surface of implanted sensors or blood vessels contract around them. Sensors implanted under the skin may become walled off by cells that flock to the site as part of the inflammatory response.



A University of Michigan team that previously demonstrated improved accuracy with intravascular sensors that were coated with nitric oxide-releasing polymers has promising preliminary results with a new strategy: creating polymer coatings that generate nitric oxide from components already in the blood. U-M chemistry professor Mark Meyerhoff will discuss the work March 15 at the 229th national meeting of the American Chemical Society in San Diego, Calif.

"The idea we had, when we started working on this problem about eight years ago, was to try to mimic what occurs in the human body to prevent clotting on the walls of your own blood vessels," said Meyerhoff. "Your endothelial cells---the cells that line all of your blood vessels---generate nitric oxide. The nitric oxide produced in this layer of cells diffuses back into the blood vessel walls, where it relaxes surrounding muscle cells and increases blood flow. It also diffuses into the lumen of the blood vessel, where it plays another important role: it inhibits platelet function and prevents platelets from sticking to the surface of the blood vessels."


Over the years, Meyerhoff and collaborators have developed nitric oxide-releasing polymers, then coated sensors with the polymers and implanted the sensors into the arteries of laboratory animals. "We always see an improvement in the accuracy of the sensors and fewer clots on the sensor surfaces when we use nitric oxide-releasing polymeric coatings," said Meyerhoff.

However, those materials have some characteristics that may limit their usefulness. "In some instances, the chemistry in the polymer is sensitive to moisture and heat, so whether it can be easily commercialized is one of the big issues," he said. In addition, the polymer coating must be very thin for most biomedical applications, which limits the amount of nitric oxide that can be stored and released from the thin coating on the sensor surface.

The new approach is to make polymers that generate nitric oxide from compounds called nitrosothiols found in the bloodstream. The key to doing this, the researchers found, is copper.

"It turns out that copper ions can act as catalysts to take nitrosothiols and generate nitric oxide from them," said Meyerhoff. So the U-M team has been creating polymers that include a copper ion-containing complex. They’ve demonstrated that complexed copper ions do have the desired catalytic effect when incorporated into a polymer and that they remain effective even after soaking in blood for up to three days, suggesting that sensors coated with nitric oxide-generating polymers might have longer lifespans than those that release nitric oxide. Next, the researchers plan to test the new polymers to see if these materials are as effective at preventing clots as the nitric oxide-releasing polymers they developed earlier.

Other questions to explore are how much of the raw materials for generating nitric oxide are present in blood, and whether the amount varies from one person to another. "The device might work with me, but if you don’t have enough of the reactive species in your blood, then it may not generate adequate nitric oxide levels and it may not prevent clotting," said Meyerhoff. To get at these questions, the researchers have developed a way of measuring the amount of nitrosothiols in blood samples, and they’re working on a way to do the same thing in fluid under the surface of the skin.

Much work remains to be done, "but the concept of using immobilized copper ions is what we’re putting a lot of thought into these days," said Meyerhoff. "It’s a speculative idea, but if it works, it will be very exciting."

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>