Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polymers with copper show promise for implanted sensors

16.03.2005


Developing chemical sensors that can be placed in the bloodstream or under the skin to continuously monitor oxygen, acidity (pH), or glucose levels is a major challenge for analytical chemists and biomedical engineers. The problem is, the body responds to these foreign objects in ways that interfere with their ability to accurately measure blood chemistry. In the bloodstream, clots form on the surface of implanted sensors or blood vessels contract around them. Sensors implanted under the skin may become walled off by cells that flock to the site as part of the inflammatory response.



A University of Michigan team that previously demonstrated improved accuracy with intravascular sensors that were coated with nitric oxide-releasing polymers has promising preliminary results with a new strategy: creating polymer coatings that generate nitric oxide from components already in the blood. U-M chemistry professor Mark Meyerhoff will discuss the work March 15 at the 229th national meeting of the American Chemical Society in San Diego, Calif.

"The idea we had, when we started working on this problem about eight years ago, was to try to mimic what occurs in the human body to prevent clotting on the walls of your own blood vessels," said Meyerhoff. "Your endothelial cells---the cells that line all of your blood vessels---generate nitric oxide. The nitric oxide produced in this layer of cells diffuses back into the blood vessel walls, where it relaxes surrounding muscle cells and increases blood flow. It also diffuses into the lumen of the blood vessel, where it plays another important role: it inhibits platelet function and prevents platelets from sticking to the surface of the blood vessels."


Over the years, Meyerhoff and collaborators have developed nitric oxide-releasing polymers, then coated sensors with the polymers and implanted the sensors into the arteries of laboratory animals. "We always see an improvement in the accuracy of the sensors and fewer clots on the sensor surfaces when we use nitric oxide-releasing polymeric coatings," said Meyerhoff.

However, those materials have some characteristics that may limit their usefulness. "In some instances, the chemistry in the polymer is sensitive to moisture and heat, so whether it can be easily commercialized is one of the big issues," he said. In addition, the polymer coating must be very thin for most biomedical applications, which limits the amount of nitric oxide that can be stored and released from the thin coating on the sensor surface.

The new approach is to make polymers that generate nitric oxide from compounds called nitrosothiols found in the bloodstream. The key to doing this, the researchers found, is copper.

"It turns out that copper ions can act as catalysts to take nitrosothiols and generate nitric oxide from them," said Meyerhoff. So the U-M team has been creating polymers that include a copper ion-containing complex. They’ve demonstrated that complexed copper ions do have the desired catalytic effect when incorporated into a polymer and that they remain effective even after soaking in blood for up to three days, suggesting that sensors coated with nitric oxide-generating polymers might have longer lifespans than those that release nitric oxide. Next, the researchers plan to test the new polymers to see if these materials are as effective at preventing clots as the nitric oxide-releasing polymers they developed earlier.

Other questions to explore are how much of the raw materials for generating nitric oxide are present in blood, and whether the amount varies from one person to another. "The device might work with me, but if you don’t have enough of the reactive species in your blood, then it may not generate adequate nitric oxide levels and it may not prevent clotting," said Meyerhoff. To get at these questions, the researchers have developed a way of measuring the amount of nitrosothiols in blood samples, and they’re working on a way to do the same thing in fluid under the surface of the skin.

Much work remains to be done, "but the concept of using immobilized copper ions is what we’re putting a lot of thought into these days," said Meyerhoff. "It’s a speculative idea, but if it works, it will be very exciting."

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>