Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule that usually protects infection-fighting cells may cause plaque deposits inside arteries

16.03.2005


A molecule that usually protects the body’s infection-fighting cells might also contribute to fatty buildups that coat arteries and lead to heart disease, UT Southwestern Medical Center researchers have found.



The molecule, called apoptosis inhibitor of macrophage or AIM, inhibits cell death in macrophages, which circulate in the bloodstream and help the body fend off infection and foreign substances. The AIM-protected macrophages go on to encourage buildup of fats on the interior walls of arteries, according to Dr. Toru Miyazaki, senior author of a study that appears in the March issue of the journal Cell Metabolism.

" We found that AIM is highly expressed in certain macrophages and that lack of AIM dramatically decreased early atherosclerotic lesion development in mice," Dr. Miyazaki said. "These results may imply a novel therapeutic application of AIM regulation for prevention of atherosclerosis in the future. Most importantly and attractively for patients, this approach may not need dietary restriction."


Dr. Miyazaki, associate professor in the Center for Immunology and of pathology, and his colleagues first discovered the protective role of AIM six years ago. In the current study, scientists exposed mice lacking AIM to a fatty diet that would normally induce atherosclerosis. After several weeks, researchers found little to no atherosclerotic lesions. Comparatively, in mice that had normal AIM function, there was marked presence of plaque deposits in the arteries following a diet of high-fat food.

"This was dramatic evidence that showed suppressing AIM function translates into prevention of atherosclerosis," Dr. Miyazaki said.

Atherosclerosis, known as "hardening of the arteries," occurs when the inside walls of an artery become thicker and less elastic. This narrows the space for blood flow and can lead to angina and heart attacks in some people. Fatty buildups occur on the inner lining of an artery and gradually thicken into a plaque. As plaque grows, it narrows the artery more and more. When the plaque ruptures, blood clots form that can block the artery entirely.

Low-density lipoprotein is transported inside arteries by macrophages, which engulf the cholesterol through a process called oxidation. Macrophages produce pro-inflammatory substances, which cause a secondary effect, encouraging other cells to accumulate and worsen plaque buildup in arteries.

"The oxidized lipids are cleared out by macrophage cells, but the lipids themselves are very toxic to cells and promote apoptosis (cell death)," Dr. Miyazaki said. "Therefore AIM production is a self-defense mechanism for macrophage cells, but interestingly, is in turn detrimental for the body."

Atherosclerosis is a contributing factor to a number of cardiovascular diseases - the No. 1 cause of death among people in the United States. It is also highly associated with other risk factors such as smoking, obesity and diets high in fat and cholesterol.

UT Southwestern researchers involved in the study included Dr. Satoko Arai, postdoctoral researcher in the Center for Immunology; Angie Bookout, researcher; John Shelton, research scientist in internal medicine; and Dr. David Mangelsdorf, professor of pharmacology and Howard Hughes Medical Institute investigator. The University of California, Los Angeles, also contributed to this study.

The two-year study was funded by the Juvenile Diabetes Research Foundation and the National Institutes of Health.

Katherine Morales | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>