Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Molecule that usually protects infection-fighting cells may cause plaque deposits inside arteries


A molecule that usually protects the body’s infection-fighting cells might also contribute to fatty buildups that coat arteries and lead to heart disease, UT Southwestern Medical Center researchers have found.

The molecule, called apoptosis inhibitor of macrophage or AIM, inhibits cell death in macrophages, which circulate in the bloodstream and help the body fend off infection and foreign substances. The AIM-protected macrophages go on to encourage buildup of fats on the interior walls of arteries, according to Dr. Toru Miyazaki, senior author of a study that appears in the March issue of the journal Cell Metabolism.

" We found that AIM is highly expressed in certain macrophages and that lack of AIM dramatically decreased early atherosclerotic lesion development in mice," Dr. Miyazaki said. "These results may imply a novel therapeutic application of AIM regulation for prevention of atherosclerosis in the future. Most importantly and attractively for patients, this approach may not need dietary restriction."

Dr. Miyazaki, associate professor in the Center for Immunology and of pathology, and his colleagues first discovered the protective role of AIM six years ago. In the current study, scientists exposed mice lacking AIM to a fatty diet that would normally induce atherosclerosis. After several weeks, researchers found little to no atherosclerotic lesions. Comparatively, in mice that had normal AIM function, there was marked presence of plaque deposits in the arteries following a diet of high-fat food.

"This was dramatic evidence that showed suppressing AIM function translates into prevention of atherosclerosis," Dr. Miyazaki said.

Atherosclerosis, known as "hardening of the arteries," occurs when the inside walls of an artery become thicker and less elastic. This narrows the space for blood flow and can lead to angina and heart attacks in some people. Fatty buildups occur on the inner lining of an artery and gradually thicken into a plaque. As plaque grows, it narrows the artery more and more. When the plaque ruptures, blood clots form that can block the artery entirely.

Low-density lipoprotein is transported inside arteries by macrophages, which engulf the cholesterol through a process called oxidation. Macrophages produce pro-inflammatory substances, which cause a secondary effect, encouraging other cells to accumulate and worsen plaque buildup in arteries.

"The oxidized lipids are cleared out by macrophage cells, but the lipids themselves are very toxic to cells and promote apoptosis (cell death)," Dr. Miyazaki said. "Therefore AIM production is a self-defense mechanism for macrophage cells, but interestingly, is in turn detrimental for the body."

Atherosclerosis is a contributing factor to a number of cardiovascular diseases - the No. 1 cause of death among people in the United States. It is also highly associated with other risk factors such as smoking, obesity and diets high in fat and cholesterol.

UT Southwestern researchers involved in the study included Dr. Satoko Arai, postdoctoral researcher in the Center for Immunology; Angie Bookout, researcher; John Shelton, research scientist in internal medicine; and Dr. David Mangelsdorf, professor of pharmacology and Howard Hughes Medical Institute investigator. The University of California, Los Angeles, also contributed to this study.

The two-year study was funded by the Juvenile Diabetes Research Foundation and the National Institutes of Health.

Katherine Morales | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>