Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advances in the characterisation of the oyster mushroom genes

16.03.2005


The oyster mushroom (Pleurotus ostreatus), apart from reducing cholesterol and having anticancerogenic properties, is characterised for its capacity for breaking down cellulose. Finding out which genes are responsible for this activity – the reason why the fungus is sometimes used as a decontaminating agent, was the aim of the PhD thesis by Arantza Eizmendi Goikoetxea, which she defended at the Public University of Navarre with the title, Molecular Characterisation of a family of genes of cellobiohydrolases in the “Pleurotus ostreatus” fungus.



Degradation of cellulose

In nature, the oyster mushroom grows on dead trunks of trees where the lignin and cellulose – the two principal components of wood - are being broken down. Degradation of lignin has been studied over the years by a number of research teams that have characterised the genes involved. But nobody, to date, has tackled the degradation of cellulose from a molecular perspective.


Cellulose is the most abundant biological polymer on the planet. It is made up of units of D-glucose united by means of glycosidic links that form long polymer chains. The breaking down by live organisms takes place through the action of three types of enzymes: endogluconases, cellobiohydrolases y b-glucosidases.

All these, necessary for the complete breaking down of cellulose, function by hydrolysing the glycoside links, but they vary in the specificity of substrate: the endoglucanases attack the glycosidic links within the cellulose molecule, the cellobiohydrolases act by liberating units of cellobiose from either end of the cellulose chain and the b-glucosidases hydrolyse the cellobiose molecules, producing glucose as end product.

In her PhD thesis Arantza Eizmendi Goikoetxea has analysed the activity of one of these types of enzymes: the cellobiohydrolases. To this end, she cloned, isolated and sequenced those genes of the oyster mushroom responsible for this activity and investigated the culture in which each of these genes expresses itself.

Five genes of one family

The PhD work resulted in the isolation of five genes of the oyster mushroom, of the Florida variety, and the expression thereof giving rise to different cellobiohydrolases, thus demonstrating the existence of a multigenic family responsible for the said enzymatic activity. Also, using such genomic sequences as a probe, it has been possible to detect what are the conditions under which the expression of each one of the genes is produced. This has enabled the synthesis of the cDNA of each gene and, by means of comparison with the corresponding genomic sequence, the characterisation of their structure.

Regarding their location on the linkage map, it has been found that four of the five genes are located on the same chromosome, quite near each other, and the other is located on a different chromosome. It is precisely this fifth gene that is structurally distinct from the others: it lacks a fragment at its end.

It should be pointed out that the genes that are together and the lone one are located on chromosomes where there are also genes responsible for the breaking down of lignin. This is of great interest because lignin and cellulose are found together in nature. They are found together in wood and it would seem logical that the genes responsible for the degradation of one or the other are located close together on the genome, on the same chromosomes.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>