Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advances in the characterisation of the oyster mushroom genes

16.03.2005


The oyster mushroom (Pleurotus ostreatus), apart from reducing cholesterol and having anticancerogenic properties, is characterised for its capacity for breaking down cellulose. Finding out which genes are responsible for this activity – the reason why the fungus is sometimes used as a decontaminating agent, was the aim of the PhD thesis by Arantza Eizmendi Goikoetxea, which she defended at the Public University of Navarre with the title, Molecular Characterisation of a family of genes of cellobiohydrolases in the “Pleurotus ostreatus” fungus.



Degradation of cellulose

In nature, the oyster mushroom grows on dead trunks of trees where the lignin and cellulose – the two principal components of wood - are being broken down. Degradation of lignin has been studied over the years by a number of research teams that have characterised the genes involved. But nobody, to date, has tackled the degradation of cellulose from a molecular perspective.


Cellulose is the most abundant biological polymer on the planet. It is made up of units of D-glucose united by means of glycosidic links that form long polymer chains. The breaking down by live organisms takes place through the action of three types of enzymes: endogluconases, cellobiohydrolases y b-glucosidases.

All these, necessary for the complete breaking down of cellulose, function by hydrolysing the glycoside links, but they vary in the specificity of substrate: the endoglucanases attack the glycosidic links within the cellulose molecule, the cellobiohydrolases act by liberating units of cellobiose from either end of the cellulose chain and the b-glucosidases hydrolyse the cellobiose molecules, producing glucose as end product.

In her PhD thesis Arantza Eizmendi Goikoetxea has analysed the activity of one of these types of enzymes: the cellobiohydrolases. To this end, she cloned, isolated and sequenced those genes of the oyster mushroom responsible for this activity and investigated the culture in which each of these genes expresses itself.

Five genes of one family

The PhD work resulted in the isolation of five genes of the oyster mushroom, of the Florida variety, and the expression thereof giving rise to different cellobiohydrolases, thus demonstrating the existence of a multigenic family responsible for the said enzymatic activity. Also, using such genomic sequences as a probe, it has been possible to detect what are the conditions under which the expression of each one of the genes is produced. This has enabled the synthesis of the cDNA of each gene and, by means of comparison with the corresponding genomic sequence, the characterisation of their structure.

Regarding their location on the linkage map, it has been found that four of the five genes are located on the same chromosome, quite near each other, and the other is located on a different chromosome. It is precisely this fifth gene that is structurally distinct from the others: it lacks a fragment at its end.

It should be pointed out that the genes that are together and the lone one are located on chromosomes where there are also genes responsible for the breaking down of lignin. This is of great interest because lignin and cellulose are found together in nature. They are found together in wood and it would seem logical that the genes responsible for the degradation of one or the other are located close together on the genome, on the same chromosomes.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>