Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moving electrons at the molecular and nanometer scales

15.03.2005


Possible applications for solar cells and other small-scale circuits



Learning how to control the movement of electrons on the molecular and nanometer scales could help scientists devise small-scale circuits for a wide variety of applications, including more efficient ways of storing and using solar energy. Marshall Newton, a theoretical chemist at the U.S. Department of Energy’s Brookhaven National Laboratory, will present at talk at the 229th National Meeting of the American Chemical Society highlighting the theoretical techniques used to understand the factors affecting electron movement. The talk will take place Monday, March 14, at 10 a.m. in Room 8 of the San Diego Convention Center.

"Electron donor/acceptor interactions govern a huge number of microscopic processes that everything and everybody is dependent upon," says Newton, "from the movement of electrons in electronic devices to the separation of charges necessary for life processes such as nerve cell communication and photosynthesis."


Theoretical chemists like Newton are trying to develop models to understand these interactions in molecular systems, where complex molecules with arbitrary shapes communicate electronically over long distances. Measuring the electronic conductance, or the strength of electron transfer, is one essential part of understanding how the electrons move.

Of particular interest to Newton is learning how the atomic nuclei that exist in the surrounding environment affect the electrons’ flow. "The nuclei produce what we call vibronic interactions, which can inhibit or facilitate the flow of the electrons," Newton says. "So we need to understand this effect of the electrons’ ’environment’ if we want to control the flow."

For example, Newton says, "If you are trying to move charge or energy down a wire, you ideally want it to move down a particular linear pathway. You want to keep it directed in a narrow, confining path, without any conducting paths going off in other directions. If you understand what factors aid or hinder conductance, it should be possible to align the conducting properties in one direction and inhibit them in other directions to achieve that goal."

Through collaborations with experimental colleagues, Newton regularly has a chance to test his theoretical analyses against actual experimental results. "The more we look into these processes theoretically and experimentally, the more complicated the picture becomes. But we think we are getting a good understanding of the key variables that control events at this scale -- what promotes good electronic communication and what may inhibit it," he says.

With that understanding, it might be possible to design molecular systems to achieve particular goals, such as improving upon photosynthesis -- a research initiative actively supported by the Department of Energy’s mission to secure America’s future energy needs. One of the first steps in photosynthesis is getting charges separated, then using that energy to make chemical energy you can store for later use. That’s the idea behind solar cells. But surpassing nature’s design remains a major challenge.

According to Newton, such rational chemical design is far from impossible: "Synthetic chemistry is open ended. If you have an idea about a type of molecule you want to build, you can do it, guided by theoretical understanding to direct your design," he says.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>