Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To control germs, scientists deploy tiny agents provocateurs

15.03.2005


Aiming to thwart persistent bacterial infections and better control group behaviors of certain microorganisms, scientists are creating artificial chemicals that infiltrate and sabotage bacterial "mobs."



Reporting the work here today (March 13) at the 229th national meeting of the American Chemical Society, University of Wisconsin-Madison chemistry professor Helen Blackwell described the ongoing construction of a new class of molecules that conduct such chemical warfare.

Targeting natural signaling mechanisms in bacterial cells, Blackwell aims to ultimately control the formation of biofilms, goo-like amalgamations of bacteria that are widespread in nature and have serious implications for agriculture and human health. Biofilms form the green slime on rocks, the plaque on human teeth and the slippery film on ship hulls. If a single cell were analogous to one man, biofilms would be the "bacterial equivalent of mob mentality," says Blackwell.


In the realm of health, biofilms are at the root of growing numbers of tenacious, and sometimes fatal, hospital infections, says Blackwell. Indeed, a U.S. National Institutes of Health study last year reported that almost 80 percent of bacterial infections are in the biofilm forma.

Biofilms can often constitute several species of bacteria and can be both harmful and beneficial. In one role, biofilms can coat plant roots and symbiotically aid ecological processes such as nitrogen fixation. But at the darker end of the scale, biofilms can form infection-inducing layers on implanted medical devices and cause deadly lung infections in cystic fibrosis patients. Biofilms have long baffled researchers because of their stupefying capacity to behave like a "super-organism" that vetoes the normal characteristics of a bacterial cell in favor of new group behaviors. "It’s amazing that such simple organisms as bacteria can form these super-colonies that work together in such sophisticated ways," says Blackwell.

Scientists have learned that bacteria sense each other and the overall density of their colony by continuously exchanging small molecules and peptides - a process known as quorum sensing. Past a certain density threshold, the colonies unite to initiate group behaviors, such as biofilm formation.

Attempting to manipulate quorum sensing in both plant and animal bacteria, Blackwell and her team are designing new compounds that mimic acylated homoserine lactones (AHLs), a natural molecule that is used by more than 50 species of bacteria to "talk." Researchers have so far studied around 15 variations of AHLs. In particular, the UW chemists are synthesizing molecules that interact with a specific class of proteins that are linked to AHLs and are critical in quorum sensing.

"We want to design molecules to confuse bacteria so they can’t sense their neighbors," says Blackwell, "but some types of quorum sensing are beneficial, so we are simultaneously searching for compounds that selectively turn on group behaviors."

Using new combinatorial chemistry techniques, Blackwell and her team are screening through hundreds of molecules at a time. The researchers have so far unveiled three promising organic compounds that seemingly quell bacterial signaling.

Helen Blackwell | EurekAlert!
Further information:
http://www.chem.wisc.edu

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>