Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New fingerprint visualization method uses X-rays to reveal missing clues

14.03.2005


Dusting for fingerprints can sometimes alter the prints, erasing valuable forensic clues. Now, chemists say they have developed a new fingerprint visualization technique using X-rays that leaves prints intact and, in addition, reveals chemical markers that could give investigators new clues for tracking criminals and missing persons. Their technique was described today at the 229th national meeting of the American Chemical Society, the world’s largest scientific society.



The technique could be especially promising for tracking down missing or lost children, according to the researchers. Children’s fingerprints are often more difficult to detect than adult’s. The new method could detect prints based on chemical markers left behind in the child’s fingerprints due to the presence of food, soil or saliva that can be used to track down evidence of the child’s movements, the scientists say.

Traditional fingerprinting methods involve treating samples with powders, liquids or vapors to add color to the fingerprint so it can be easily photographed, a process called contrast enhancement. But fingerprints present on certain substances such as fibrous papers, textiles, wood, leather, plastic, multi-colored backgrounds and human skin can sometimes be difficult to detect by this method, according to study leader Chris Worley, Ph.D., an analytical chemist with Los Alamos National Laboratory in New Mexico. Besides permanently altering the prints, developing an effective visualization method can sometimes be time consuming, he adds.


The new technique uses a process called micro-X-ray fluorescence (MXRF), which rapidly reveals the elemental composition of a sample by irradiating it with a thin beam of X-rays without disturbing the sample. Salts such as sodium chloride and potassium chloride excreted in sweat are sometimes present in detectable quantities in fingerprints. Using MXRF, the researchers showed that they could detect the sodium, potassium and chlorine from such salts. And since these salts are deposited along the patterns present in a fingerprint, an image of the fingerprint can be visualized producing an elemental image for analysis.

In preliminary laboratory studies using the technique, Worley and his associates demonstrated that they could even detect fingerprints when lotion, soil, saliva or sunscreen was applied to the hands. Such prints might be difficult to detect using conventional screening methods.

“This process represents a valuable new tool for forensic investigators that could allow them to nondestructively detect prints on surfaces that might otherwise be undetectable by conventional methods,” says Worley. “It won’t replace traditional fingerprinting, but could provide a valuable complement to it.”

Unlike traditional methods in which fingerprints can often be photographed at the crime scene, the new technique currently requires that samples be taken to the lab for analysis with the MXRF instrument and placed in an X-ray chamber, where a digital elemental image is collected on a computer and saved for analysis. If further testing and refinement prove successful, the experimental technique could be used commercially for fingerprint visualization in two to five years, the researchers predict.

In addition to revealing fingerprints, the MXRF technique also reveals chemical artifacts present in the prints themselves, providing new clues for crime scene analysis. Abnormally high levels of potassium, for instance, may suggest the presence of potassium nitrate, a component of explosives. High levels of sulfur and potassium may suggest gunpowder. Other elements could reveal environmental clues, such as soil type and food particles, that help track a suspect’s movements. Even partial prints that cannot be used to identify a person might contain chemical artifacts that reveal useful crime clues, he says.

The technique does have limitations, Worley says. Some fingerprints will not contain enough detectable material to be “seen.” In addition, MXRF fingerprint visualization can’t detect every element. In general, the heavier the individual element, the more easily it is detectable by this method, Worley says. Lighter elements like carbon, nitrogen and oxygen can’t be detected, but heavier elements like sodium, potassium and chlorine are more easily identified.

But in the future, the researchers hope to integrate other spectroscopic methods besides MXRF that can detect complex molecules in addition to elements, giving more complete forensic information. They also hope that their work will lead to a smaller, portable MXRF device that can be easily carried by forensic investigators to quickly test samples directly at the crime scene. More studies are planned, they say.

Besides Worley, other Los Alamos investigators involved in this study include Sara S. Wiltshire, Thomasin C. Miller, George J. Havrilla and Vahid Majidi.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>