Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Medical molecules designed to respond to visible light that can penetrate tissue


If you have ever covered a flashlight with your hand and seen the red light that still comes through, then you have seen light in the therapeutic window – that magic wavelength that is not absorbed or reflected away by tissue. Scientists believe that they can use light at that wavelength to signal manmade molecules to release drugs at disease sites in the body.

Such possibilities will be discussed in a poster and a talk by Virginia Tech researchers presenting at the 229th American Chemical Society national meeting in San Diego on March 13-17.

Researchers in Karen Brewer’s group at Virginia Tech have designed supramolecular complexes that can hold and, when signaled by light (photoinitiatied), will generate pharmaceutical compounds that can cleave DNA, such as in a tumor cell. "The challenge has been that tissue blocks light so we can’t signal molecules deep within the body to deliver drug therapy," says Brewer, associate professor of chemistry.

Matthew Mongelli of Maywood N.J., a postdoctoral associate in chemistry, and his colleagues in chemistry and biology at Virginia Tech, have been working with Theralase Technologies Inc. to design molecular systems that use light that is in the therapeutic window. Starting with a complex with known DNA cleaving qualities, they changed the light absorber unit to one that responds to the red wavelength.

"Investigations into polyazine supermolecular complexes containing Ru and Os with Rh centers that possess photoactive MMCT states: Visible light induced, oxygen independent DNA photocleavage (INOR 329)," will be presented by Mongelli during the general poster session, 7 to 9 p.m., Sunday, March 13, in Convention Center Hall D. The poster has also been selected for the Sci_Mix session 7 to 9 p.m. Monday, March 14, in the Convention Center’s Sails Pavilion.

Co-authors are Brewer; undergraduate chemistry students Matthew Jeletic of Centreville, Va. and Jerita Dubash of Ashburn, Va.; and Biology Professor Brenda S. J. Winkel, all of Virginia Tech.

Brewer will also give an oral presentation on designing photochemical molecular devices and applications in photodynamic therapy and in solar energy conversion. Because of the detail offered by Mongelli’s poster, Brewer says she will focus on the exciting potential of creating molecules to reduce water to hydrogen. The talk, "Designing photochemical molecular devices utilizing Os and Ru polyazine light absorbers and Rh and Pt reactive sites: Applications in solar energy conversion and photodynamic therapy (INOR 410)," will be presented at 4:50 p.m. Monday, March 14, in Convention Center Room 4. Co-authors are chemistry Ph.D. students Mark Elvington of Blacksburg, Va. and Ran Miao of Zhangzhou City, China, Mongelli, Dubash, Jeletic, and chemistry undergraduate Julie Heinecke of Powhatan, Va.

Susan Trulove | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>