Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Medical molecules designed to respond to visible light that can penetrate tissue

14.03.2005


If you have ever covered a flashlight with your hand and seen the red light that still comes through, then you have seen light in the therapeutic window – that magic wavelength that is not absorbed or reflected away by tissue. Scientists believe that they can use light at that wavelength to signal manmade molecules to release drugs at disease sites in the body.



Such possibilities will be discussed in a poster and a talk by Virginia Tech researchers presenting at the 229th American Chemical Society national meeting in San Diego on March 13-17.

Researchers in Karen Brewer’s group at Virginia Tech have designed supramolecular complexes that can hold and, when signaled by light (photoinitiatied), will generate pharmaceutical compounds that can cleave DNA, such as in a tumor cell. "The challenge has been that tissue blocks light so we can’t signal molecules deep within the body to deliver drug therapy," says Brewer, associate professor of chemistry.


Matthew Mongelli of Maywood N.J., a postdoctoral associate in chemistry, and his colleagues in chemistry and biology at Virginia Tech, have been working with Theralase Technologies Inc. to design molecular systems that use light that is in the therapeutic window. Starting with a complex with known DNA cleaving qualities, they changed the light absorber unit to one that responds to the red wavelength.

"Investigations into polyazine supermolecular complexes containing Ru and Os with Rh centers that possess photoactive MMCT states: Visible light induced, oxygen independent DNA photocleavage (INOR 329)," will be presented by Mongelli during the general poster session, 7 to 9 p.m., Sunday, March 13, in Convention Center Hall D. The poster has also been selected for the Sci_Mix session 7 to 9 p.m. Monday, March 14, in the Convention Center’s Sails Pavilion.

Co-authors are Brewer; undergraduate chemistry students Matthew Jeletic of Centreville, Va. and Jerita Dubash of Ashburn, Va.; and Biology Professor Brenda S. J. Winkel, all of Virginia Tech.

Brewer will also give an oral presentation on designing photochemical molecular devices and applications in photodynamic therapy and in solar energy conversion. Because of the detail offered by Mongelli’s poster, Brewer says she will focus on the exciting potential of creating molecules to reduce water to hydrogen. The talk, "Designing photochemical molecular devices utilizing Os and Ru polyazine light absorbers and Rh and Pt reactive sites: Applications in solar energy conversion and photodynamic therapy (INOR 410)," will be presented at 4:50 p.m. Monday, March 14, in Convention Center Room 4. Co-authors are chemistry Ph.D. students Mark Elvington of Blacksburg, Va. and Ran Miao of Zhangzhou City, China, Mongelli, Dubash, Jeletic, and chemistry undergraduate Julie Heinecke of Powhatan, Va.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>