Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Create, Study Methane Hydrates in "Ocean Floor" Lab

14.03.2005


Data may help develop strategies for mining natural gas locked up in seafloor sediments

Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have recreated the high-pressure, low-temperature conditions of the seafloor in a tabletop apparatus for the study of methane-hydrates, an abundant but currently out-of-reach source of natural gas trapped within sediments below the ocean floor. Michael Eaton, a Stony Brook University graduate student working for Brookhaven chemist Devinder Mahajan, will present a talk outlining the use of the apparatus for the creation and study of methane hydrates during a special two-day symposium co-organized by Mahajan at the 229th National Meeting of the American Chemical Society in San Diego, California. The talk is scheduled for Sunday, March 13, at 3:05 p.m. in room Madeleine C-D of the Hyatt Regency.

“The amount of natural gas that is tied up in methane hydrates beneath the seafloor and in permafrost on Earth is several orders of magnitude higher than all other known conventional sources of natural gas — enough to meet our energy needs for several decades,” Mahajan says. But extracting this resource poses several challenges.



For one thing, methane hydrates -- which are ice-like cages made of water molecules surrounding individual methane molecules -- are only stable at the very low temperatures and high pressures present at the ocean floor. “If you try to bring it up, these things fizzle and decompose, releasing the trapped methane,” Mahajan says.

So a multi-agency team led by the Department of Energy -- as part of its mission to secure America’s future energy needs -- is trying to learn about the conditions necessary for keeping hydrates locked up so they can be extracted safely and tapped for fuel.

Mahajan’s group has built a vessel that mimics the seafloor temperature and pressure conditions, where they can study the kinetics of methane hydrate formation and decomposition. Unlike other high-pressure research vessels, the Brookhaven apparatus allows scientists to interchange vessels of different volumes, study even fine sediments, and visualize and record the entire hydrate-forming event through a 12-inch window along the vessel. In addition, mass-balance instrumentation allows the Brookhaven group to collect reproducible data in the bench-top unit. Even better, Mahajan says, they can study the kinetics in actual samples of sediment that once contained hydrates -- as close to the natural conditions as you can get in a lab.

“You fill the vessel with water and sediment, put in methane gas, and cool it down under high pressure. After a few hours, the hydrates form. You can actually see it. They look like ice, but they are not. They are stable at 4 degrees Celsius,” he explains.

One further advantage of doing this work at Brookhaven Lab is that the scientists can use the National Synchrotron Light Source -- a source of intense x-rays, ultraviolet, and infrared light -- to measure physical characteristics of the sediments under study. Using x-ray computed microtomography, the scientists gain information about the porosity and other physical characteristics that may affect the availability of nucleation sites where hydrates can form.

Such data about hydrate formation in natural host sediment samples are scarce. By studying different samples and learning what combinations of pressure and temperature keep the methane locked up, the scientists hope to identify ways to compensate for the changes the hydrates experience as they are brought to the ocean’s surface so they can be extracted with a minimum loss. The comparisons of different sediment samples might also help pinpoint the most abundant sources of locked-up methane.

“It may be at least a decade before we can even think about mining these deposits, but answering these fundamental questions is certainly the place to start,” says Mahajan, who holds a joint appointment as a Stony Brook University professor. “This is a very important issue tied to our future national energy security.”

This research was initially funded by Brookhaven’s Laboratory Directed Research and Development program and is now funded by the Department of Energy’s Office of Fossil Energy. The symposium on Gas Hydrates and Clathrates is being co-sponsored by the Petroleum and Fuel Divisions of the American Chemical Society.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>