Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Create, Study Methane Hydrates in "Ocean Floor" Lab

14.03.2005


Data may help develop strategies for mining natural gas locked up in seafloor sediments

Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have recreated the high-pressure, low-temperature conditions of the seafloor in a tabletop apparatus for the study of methane-hydrates, an abundant but currently out-of-reach source of natural gas trapped within sediments below the ocean floor. Michael Eaton, a Stony Brook University graduate student working for Brookhaven chemist Devinder Mahajan, will present a talk outlining the use of the apparatus for the creation and study of methane hydrates during a special two-day symposium co-organized by Mahajan at the 229th National Meeting of the American Chemical Society in San Diego, California. The talk is scheduled for Sunday, March 13, at 3:05 p.m. in room Madeleine C-D of the Hyatt Regency.

“The amount of natural gas that is tied up in methane hydrates beneath the seafloor and in permafrost on Earth is several orders of magnitude higher than all other known conventional sources of natural gas — enough to meet our energy needs for several decades,” Mahajan says. But extracting this resource poses several challenges.



For one thing, methane hydrates -- which are ice-like cages made of water molecules surrounding individual methane molecules -- are only stable at the very low temperatures and high pressures present at the ocean floor. “If you try to bring it up, these things fizzle and decompose, releasing the trapped methane,” Mahajan says.

So a multi-agency team led by the Department of Energy -- as part of its mission to secure America’s future energy needs -- is trying to learn about the conditions necessary for keeping hydrates locked up so they can be extracted safely and tapped for fuel.

Mahajan’s group has built a vessel that mimics the seafloor temperature and pressure conditions, where they can study the kinetics of methane hydrate formation and decomposition. Unlike other high-pressure research vessels, the Brookhaven apparatus allows scientists to interchange vessels of different volumes, study even fine sediments, and visualize and record the entire hydrate-forming event through a 12-inch window along the vessel. In addition, mass-balance instrumentation allows the Brookhaven group to collect reproducible data in the bench-top unit. Even better, Mahajan says, they can study the kinetics in actual samples of sediment that once contained hydrates -- as close to the natural conditions as you can get in a lab.

“You fill the vessel with water and sediment, put in methane gas, and cool it down under high pressure. After a few hours, the hydrates form. You can actually see it. They look like ice, but they are not. They are stable at 4 degrees Celsius,” he explains.

One further advantage of doing this work at Brookhaven Lab is that the scientists can use the National Synchrotron Light Source -- a source of intense x-rays, ultraviolet, and infrared light -- to measure physical characteristics of the sediments under study. Using x-ray computed microtomography, the scientists gain information about the porosity and other physical characteristics that may affect the availability of nucleation sites where hydrates can form.

Such data about hydrate formation in natural host sediment samples are scarce. By studying different samples and learning what combinations of pressure and temperature keep the methane locked up, the scientists hope to identify ways to compensate for the changes the hydrates experience as they are brought to the ocean’s surface so they can be extracted with a minimum loss. The comparisons of different sediment samples might also help pinpoint the most abundant sources of locked-up methane.

“It may be at least a decade before we can even think about mining these deposits, but answering these fundamental questions is certainly the place to start,” says Mahajan, who holds a joint appointment as a Stony Brook University professor. “This is a very important issue tied to our future national energy security.”

This research was initially funded by Brookhaven’s Laboratory Directed Research and Development program and is now funded by the Department of Energy’s Office of Fossil Energy. The symposium on Gas Hydrates and Clathrates is being co-sponsored by the Petroleum and Fuel Divisions of the American Chemical Society.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>