Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Create, Study Methane Hydrates in "Ocean Floor" Lab

14.03.2005


Data may help develop strategies for mining natural gas locked up in seafloor sediments

Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have recreated the high-pressure, low-temperature conditions of the seafloor in a tabletop apparatus for the study of methane-hydrates, an abundant but currently out-of-reach source of natural gas trapped within sediments below the ocean floor. Michael Eaton, a Stony Brook University graduate student working for Brookhaven chemist Devinder Mahajan, will present a talk outlining the use of the apparatus for the creation and study of methane hydrates during a special two-day symposium co-organized by Mahajan at the 229th National Meeting of the American Chemical Society in San Diego, California. The talk is scheduled for Sunday, March 13, at 3:05 p.m. in room Madeleine C-D of the Hyatt Regency.

“The amount of natural gas that is tied up in methane hydrates beneath the seafloor and in permafrost on Earth is several orders of magnitude higher than all other known conventional sources of natural gas — enough to meet our energy needs for several decades,” Mahajan says. But extracting this resource poses several challenges.



For one thing, methane hydrates -- which are ice-like cages made of water molecules surrounding individual methane molecules -- are only stable at the very low temperatures and high pressures present at the ocean floor. “If you try to bring it up, these things fizzle and decompose, releasing the trapped methane,” Mahajan says.

So a multi-agency team led by the Department of Energy -- as part of its mission to secure America’s future energy needs -- is trying to learn about the conditions necessary for keeping hydrates locked up so they can be extracted safely and tapped for fuel.

Mahajan’s group has built a vessel that mimics the seafloor temperature and pressure conditions, where they can study the kinetics of methane hydrate formation and decomposition. Unlike other high-pressure research vessels, the Brookhaven apparatus allows scientists to interchange vessels of different volumes, study even fine sediments, and visualize and record the entire hydrate-forming event through a 12-inch window along the vessel. In addition, mass-balance instrumentation allows the Brookhaven group to collect reproducible data in the bench-top unit. Even better, Mahajan says, they can study the kinetics in actual samples of sediment that once contained hydrates -- as close to the natural conditions as you can get in a lab.

“You fill the vessel with water and sediment, put in methane gas, and cool it down under high pressure. After a few hours, the hydrates form. You can actually see it. They look like ice, but they are not. They are stable at 4 degrees Celsius,” he explains.

One further advantage of doing this work at Brookhaven Lab is that the scientists can use the National Synchrotron Light Source -- a source of intense x-rays, ultraviolet, and infrared light -- to measure physical characteristics of the sediments under study. Using x-ray computed microtomography, the scientists gain information about the porosity and other physical characteristics that may affect the availability of nucleation sites where hydrates can form.

Such data about hydrate formation in natural host sediment samples are scarce. By studying different samples and learning what combinations of pressure and temperature keep the methane locked up, the scientists hope to identify ways to compensate for the changes the hydrates experience as they are brought to the ocean’s surface so they can be extracted with a minimum loss. The comparisons of different sediment samples might also help pinpoint the most abundant sources of locked-up methane.

“It may be at least a decade before we can even think about mining these deposits, but answering these fundamental questions is certainly the place to start,” says Mahajan, who holds a joint appointment as a Stony Brook University professor. “This is a very important issue tied to our future national energy security.”

This research was initially funded by Brookhaven’s Laboratory Directed Research and Development program and is now funded by the Department of Energy’s Office of Fossil Energy. The symposium on Gas Hydrates and Clathrates is being co-sponsored by the Petroleum and Fuel Divisions of the American Chemical Society.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>