Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Defenseless plants arm themselves with metals


A group of plants that uses metal to defend against infection may do so because the normal defense mechanism used by most other plants is blocked.

Purdue University researchers found that this group of plants produces, but does not respond to, the molecule that triggers the infection response used by nearly all other plants. The molecule does, however, allow this group of plants, called metal hyperaccumulators, to store high levels of metal in their tissues, rendering them pathogen resistant.

These findings, reported in today’s (Friday, March 11) issue of the journal Plant Physiology, shed new light on the evolution of these plants and may have implications for the development of crops that may one day remove metal and other contaminants from the environment.

"Our goal is to find the high-level regulator – the one gene or group of genes that turns a plant into a hyperaccumulator," said David Salt, associate professor of plant molecular physiology in Purdue’s horticulture department. "But we have no way to know what that gene is, so we need to deconstruct the process, starting with things we can measure, which are these visible traits, and then we work backwards."

A question that has long stymied Salt and his colleagues centers on the origins of this trait. While essential as micronutrients, metals are toxic in high levels. Most plants have mechanisms that keep metals in the environment out of their tissues. So what would have driven some plants to do just the opposite?

"The existing explanation is that metal accumulation evolved to protect these plants from pathogens," Salt said. "Yet most other plants don’t accumulate metals, and they resist infection just fine. It never really made sense to me. If everyone’s already resisting pathogens, why do you need an extra mechanism? There has to be more to it."

It turns out the plants Salt studies – a group of small, weedy alpine flowers called Thlaspi – lack the standard pathogen defense mechanism found in nearly every other plant species. Thlaspi plants live in soils naturally enriched in nickel, and when growing in their natural habitat, are not any more susceptible to pathogens than similar plants growing nearby.

When grown in the absence of metal, however, these plants are defenseless against diseases like powdery mildew, a common fungal infection that most other plants fight off with ease.

In most plants, exposure to powdery mildew and other pathogens triggers the plant defense pathway, a series of biochemical events that occur in succession and help the plant resist infection. A molecule called salicylic acid – a common plant compound and the active ingredient in pharmaceuticals like aspirin and acne medications – governs this pathway.

When faced with a fungus or bacteria, most plants turn up their production of salicylic acid, which then interacts with other molecules in the plant, eventually turning on the genes that produce the proteins involved in fighting infection. These infection-fighting proteins also turn off salicylic acid production, a phenomenon known as negative feedback. In this way, plants can turn the pathogen defense pathway on and off as needed.

Most plants maintain very low levels of salicylic acid in their tissues unless they are fighting an infection. Metal hyperaccumulators, however, have significantly elevated salicylic acid in their tissues all the time.

In the current study, Salt and his colleagues compared salicylic acid levels in both the hyperaccumulator Thlaspi and the common lab plant Arabadopsis, which does not accumulate metal. They also compared fungal infection rates in both types of plants when grown with or without exposure to the metal nickel.

They found significantly higher levels of salicylic acid in the hyperaccumulator compared to the non-accumulator. In addition, while Thlaspi thrived in metal-enriched soil, it succumbed to a severe fungal infection when no metal was present.

"This difference in salicylic acid levels raises several questions," Salt said. "If you modify other plants so that the level of salicylic acid is always high, those plants are not happy. They look sickly. With salicylic acid continuously elevated, a plant thinks it’s under some massive attack by a pathogen. It’s expressing all its pathogen response proteins, and at such a high level, they can have a deleterious effect on the plant."

Metal hyperaccumulators like Thlaspi, however, don’t show any negative effects from their constant exposure to high levels of salicylic acid.

"These plants have tons of salicylic acid, but for some reason that salicylic acid is not initiating the pathogen response. That tells us some part of the pathway doesn’t sense salicylic acid – that the signal is blocked," he said. "It’s like yelling into the phone louder and louder, but no one can hear it."

Salt and his colleagues also show in the current study that salicylic acid induces production of a molecule called glutathione, a potent antioxidant that protects plants from metal. Because the production of glutathione is tied to the production of salicylic acid, most plants normally have fairly low glutathione levels and, consequently, can’t tolerate metals.

Thlaspi, on the other hand, is brimming with glutathione, thanks to its elevated salicylic acid levels. When grown in nickel-enriched soil, Thlaspi takes up 3 percent of its body weight in the metal. Salt and his colleagues have shown that this metal content is what makes the plants resistant to pathogens.

Salt proposes a scenario in which at some point in evolutionary history some plants acquired a mutation that disrupts the salicylic acid signaling pathway, leaving them unable to fight off pathogens.

"In most settings, those plants would be toast – they’d be immediately selected out of the population," he said. "This whole system raises the question of evolution.

"But let’s say, by some obscure chance, those plants were growing on soils with elevated metals. We’ve shown that high salicylic acid levels produce high glutathione levels. We know high glutathione is crucial for nickel tolerance, and when this plant accumulates nickel, it becomes pathogen resistant. So now the plant doesn’t die; it can propagate, and over time this can evolve as a more enhanced system."

This research is part of a larger gene discovery initiative involving Purdue’s Center for Phytoremediation Research and Development, a multidisciplinary research center dedicated to developing a "molecular toolbox" to provide the genetic information to develop plants to clean up polluted sites. Technologies developed at the center will be commercialized through a partnership with the Midwest Hazardous Substance Research Center, a U.S. Environmental Protection Agency regional hazardous substance research center.

Salt collaborated in this research with John Freeman, a former graduate student now at the University of Colorado, Fort Collins. Graduate students Daniel Garcia and Amber Hopf and postdoctoral scientist Donggium Kim at Purdue’s Center for Plant Environmental Stress Physiology also participated in this research. The National Science Foundation and the Indiana 21st Century Research and Technology Fund funded this project, with support from the Bindley Bioscience Center in Purdue’s Discovery Park.

Jennifer Cutraro | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>