Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers report new pro-inflammatory role for anti-inflammatory enzyme

11.03.2005


Part of the immune system’s pro-inflammatory response to bacterial invasion is to increase nitric oxide levels with an enzyme called inducible nitric oxide synthase. In a study published in the Journal of Biological Chemistry, scientists report that the predominantly anti-inflammatory enzyme, endothelial nitric oxide synthase, is also involved in nitric oxide production in response to infection. This discovery may eventually provide a new target to treat sepsis, which is caused by overproduction of nitric oxide.



The research appears as the "Paper of the Week" in the March 18 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.

When immune cells are exposed to pro-inflammatory cytokines or bacterial endotoxin (part of the bacterial cell wall) they start to produce inducible nitric oxide synthase (iNOS), an enzyme responsible for the manufacture of nitric oxide (NO). This results in an increase in cellular NO which contributes to inflammation and host defense.


"NO acts as a cytotoxic/cytostatic effector molecule released (predominantly) by immune cells," explains Dr. Adrian J. Hobbs of University College London. "It kills pathogens via a variety of mechanisms, mostly related to inhibition of metabolic enzymes and destruction of DNA."

However, too much NO can be a bad thing. Sustained overproduction of NO can cause septic shock (sepsis). "In sepsis, which is a systemic bacterial infection, the body expresses iNOS which generates relatively high concentrations of NO," says Dr. Hobbs. "This aids host defense by killing the invading organism, but in excessive quantities starts to lead to host-damage. In sepsis, this is manifested predominantly as a profound hypotension, inadequate tissue perfusion and organ failure. This often results in death."

Previously, Dr. Hobbs and colleagues demonstrated in vitro that endothelial nitric oxide synthase (eNOS) also plays a pro-inflammatory role by facilitating iNOS expression. "eNOS is found almost exclusively in the vascular endothelium and the NO that it synthesizes plays a key role in regulation of blood pressure, platelet aggregation, the reactivity of immune cells and growth of vascular smooth muscle cells," explains Dr. Hobbs. "iNOS is not expressed under normal physiological conditions, but is up-regulated for host-defense purposes."

Now, the researchers have validated their hypothesis in vivo using mice that do not produce eNOS. These mutant mice had a marked reduction in iNOS production in response to bacterial endotoxin, as well as lower plasma levels of NO2- and NO3- and less mortality than normal mice. The scientists also showed that endotoxin activates eNOS in macrophages and that this effect is an essential trigger for the induction of iNOS.

"eNOS has until recently been thought to act principally in an anti-inflammatory manner," notes Dr. Hobbs. "The results of our study show clearly that eNOS can also act in a pro-inflammatory manner and accelerate host-defense in response to pathogenic stimuli."

This discovery may eventually lead to new treatments for septic shock and other inflammatory diseases. "Pharmaceutical companies have been developing iNOS inhibitors to treat sepsis," explains Dr. Hobbs. "However, it now appears as if these are ineffective in reducing the mortality associated with the disease. The identification of a pro-inflammatory role for eNOS-derived NO may provide the stimulus for further research in this area and thereby identify novel targets for treatment of inflammatory diseases."

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>