Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers report new pro-inflammatory role for anti-inflammatory enzyme


Part of the immune system’s pro-inflammatory response to bacterial invasion is to increase nitric oxide levels with an enzyme called inducible nitric oxide synthase. In a study published in the Journal of Biological Chemistry, scientists report that the predominantly anti-inflammatory enzyme, endothelial nitric oxide synthase, is also involved in nitric oxide production in response to infection. This discovery may eventually provide a new target to treat sepsis, which is caused by overproduction of nitric oxide.

The research appears as the "Paper of the Week" in the March 18 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.

When immune cells are exposed to pro-inflammatory cytokines or bacterial endotoxin (part of the bacterial cell wall) they start to produce inducible nitric oxide synthase (iNOS), an enzyme responsible for the manufacture of nitric oxide (NO). This results in an increase in cellular NO which contributes to inflammation and host defense.

"NO acts as a cytotoxic/cytostatic effector molecule released (predominantly) by immune cells," explains Dr. Adrian J. Hobbs of University College London. "It kills pathogens via a variety of mechanisms, mostly related to inhibition of metabolic enzymes and destruction of DNA."

However, too much NO can be a bad thing. Sustained overproduction of NO can cause septic shock (sepsis). "In sepsis, which is a systemic bacterial infection, the body expresses iNOS which generates relatively high concentrations of NO," says Dr. Hobbs. "This aids host defense by killing the invading organism, but in excessive quantities starts to lead to host-damage. In sepsis, this is manifested predominantly as a profound hypotension, inadequate tissue perfusion and organ failure. This often results in death."

Previously, Dr. Hobbs and colleagues demonstrated in vitro that endothelial nitric oxide synthase (eNOS) also plays a pro-inflammatory role by facilitating iNOS expression. "eNOS is found almost exclusively in the vascular endothelium and the NO that it synthesizes plays a key role in regulation of blood pressure, platelet aggregation, the reactivity of immune cells and growth of vascular smooth muscle cells," explains Dr. Hobbs. "iNOS is not expressed under normal physiological conditions, but is up-regulated for host-defense purposes."

Now, the researchers have validated their hypothesis in vivo using mice that do not produce eNOS. These mutant mice had a marked reduction in iNOS production in response to bacterial endotoxin, as well as lower plasma levels of NO2- and NO3- and less mortality than normal mice. The scientists also showed that endotoxin activates eNOS in macrophages and that this effect is an essential trigger for the induction of iNOS.

"eNOS has until recently been thought to act principally in an anti-inflammatory manner," notes Dr. Hobbs. "The results of our study show clearly that eNOS can also act in a pro-inflammatory manner and accelerate host-defense in response to pathogenic stimuli."

This discovery may eventually lead to new treatments for septic shock and other inflammatory diseases. "Pharmaceutical companies have been developing iNOS inhibitors to treat sepsis," explains Dr. Hobbs. "However, it now appears as if these are ineffective in reducing the mortality associated with the disease. The identification of a pro-inflammatory role for eNOS-derived NO may provide the stimulus for further research in this area and thereby identify novel targets for treatment of inflammatory diseases."

Nicole Kresge | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>