Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blocking neurodegeneration by radiation and bone marrow transfer prevents inherited glaucoma in mice

11.03.2005


In a discovery that could point to new treatments for a wide range of neurodegenerative diseases, Jackson Laboratory researchers have found that high-dose radiation and bone marrow transfer treatments on glaucoma-susceptible mice completely blocked the development of glaucoma, by preventing neurodegeneration.



Glaucomas are among the most common neurodegenerative diseases, and a leading cause of blindness in the United States. Many patients with glaucoma have high intraocular pressure (IOP), long believed to be a cause of the degeneration of the optic nerve and nerve cells in the retina that leads to vision loss. The standard treatment for glaucoma is reducing the intraocular pressure by medication or surgery.

However, researchers have also observed that some patients with elevated IOP do not develop optic nerve and retinal damage, while others do incur damage despite relatively normal IOP. "It’s increasingly clear," says Dr. Simon W.M. John, leader of the Jackson Laboratory research team and a Howard Hughes Medical Institute Investigator, "that multiple mechanisms are at work in this disease."


John and researchers elsewhere have identified several genes associated with glaucomas. They have also developed inherited mouse glaucoma models that reliably develop glaucoma in mid-life. One of these models is the DBA/2J mouse.

The Jackson research team treated 5- to 8-week-old DBA/2J mice with a single, high dose of gamma radiation, together with bone marrow transfer.

When they examined the mice at 12-14 months--an age at which most DBA/2J mice have advanced glaucoma--the researchers were amazed to find that the vast majority of mice did not have glaucoma. There was no detectable loss of the retinal ganglion cells, which typically degenerate in glaucoma. "It was very surprising and we had to be very careful," John said. "We repeated the experiment two more times with the same results."

The research paper, published online in the Proceedings of the National Academy of Sciences, is the first to suggest that high-dose radiation together with bone marrow transfer--treatments in use today for human patients with leukemia and other cancers--could potentially treat glaucoma. "It is possible that the treatment may also protect against other neurodegenerative diseases, but many experiments are needed to test this," he noted. Conditions in this category include Alzheimer’s disease and Parkinson’s disease.

Of course, full-body radiation and bone marrow transfer is not an appropriate therapy for human glaucoma. Dr. John said his lab would be investigating whether directing radiation locally to the optic nerve and retina might be equally effective in preventing glaucoma in mice. Ultimately, studies that reveal how the treatment works may lead to new types of therapy for people.

The Jackson Laboratory, founded 75 years ago, is the world’s largest mammalian genetics research institution. Its research staff of more than 450 investigates the genetic basis of cancers, heart disease, osteoporosis, Alzheimer’s disease, glaucoma, diabetes, and many other human diseases and disorders. The Laboratory is also the world’s source for nearly 3,000 strains of genetically defined mice, home of the Mouse Genome Database and many other publicly available information resources, and an international hub for scientific courses, conferences, training and education.

Joyce Peterson | EurekAlert!
Further information:
http://www.jax.org

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>