Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blocking neurodegeneration by radiation and bone marrow transfer prevents inherited glaucoma in mice

11.03.2005


In a discovery that could point to new treatments for a wide range of neurodegenerative diseases, Jackson Laboratory researchers have found that high-dose radiation and bone marrow transfer treatments on glaucoma-susceptible mice completely blocked the development of glaucoma, by preventing neurodegeneration.



Glaucomas are among the most common neurodegenerative diseases, and a leading cause of blindness in the United States. Many patients with glaucoma have high intraocular pressure (IOP), long believed to be a cause of the degeneration of the optic nerve and nerve cells in the retina that leads to vision loss. The standard treatment for glaucoma is reducing the intraocular pressure by medication or surgery.

However, researchers have also observed that some patients with elevated IOP do not develop optic nerve and retinal damage, while others do incur damage despite relatively normal IOP. "It’s increasingly clear," says Dr. Simon W.M. John, leader of the Jackson Laboratory research team and a Howard Hughes Medical Institute Investigator, "that multiple mechanisms are at work in this disease."


John and researchers elsewhere have identified several genes associated with glaucomas. They have also developed inherited mouse glaucoma models that reliably develop glaucoma in mid-life. One of these models is the DBA/2J mouse.

The Jackson research team treated 5- to 8-week-old DBA/2J mice with a single, high dose of gamma radiation, together with bone marrow transfer.

When they examined the mice at 12-14 months--an age at which most DBA/2J mice have advanced glaucoma--the researchers were amazed to find that the vast majority of mice did not have glaucoma. There was no detectable loss of the retinal ganglion cells, which typically degenerate in glaucoma. "It was very surprising and we had to be very careful," John said. "We repeated the experiment two more times with the same results."

The research paper, published online in the Proceedings of the National Academy of Sciences, is the first to suggest that high-dose radiation together with bone marrow transfer--treatments in use today for human patients with leukemia and other cancers--could potentially treat glaucoma. "It is possible that the treatment may also protect against other neurodegenerative diseases, but many experiments are needed to test this," he noted. Conditions in this category include Alzheimer’s disease and Parkinson’s disease.

Of course, full-body radiation and bone marrow transfer is not an appropriate therapy for human glaucoma. Dr. John said his lab would be investigating whether directing radiation locally to the optic nerve and retina might be equally effective in preventing glaucoma in mice. Ultimately, studies that reveal how the treatment works may lead to new types of therapy for people.

The Jackson Laboratory, founded 75 years ago, is the world’s largest mammalian genetics research institution. Its research staff of more than 450 investigates the genetic basis of cancers, heart disease, osteoporosis, Alzheimer’s disease, glaucoma, diabetes, and many other human diseases and disorders. The Laboratory is also the world’s source for nearly 3,000 strains of genetically defined mice, home of the Mouse Genome Database and many other publicly available information resources, and an international hub for scientific courses, conferences, training and education.

Joyce Peterson | EurekAlert!
Further information:
http://www.jax.org

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>