Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insight into DNA’s "Weakest Links" May Yield Clues to Cancer Biology

11.03.2005


The chromosomes of mammals, including humans, contain regions that are particularly prone to breaking under conditions of stress and in cancer. Now, new research by geneticists at Duke University Medical Center finds that yeast cells also contain such weak links in DNA and begins to reveal the molecular characteristics of these links that might help to explain them.



The findings, published in the March 11, 2005, issue of Cell, suggest that yeast may offer a useful model system for studying the fundamental properties of so-called DNA fragile sites, providing new insight into the chromosomal instability found in cancer cells, said the researchers. "If you look at solid tumors in humans, you see that the chromosomes of cancer cells exhibit incredible instability," said Thomas Petes, Ph.D., chair of genetics and microbiology at Duke. "Now, we have been able to mimic some of that instability in yeast cells and can begin to ask whether there is anything special that defines those places where chromosomes tend to break."

Organisms normally exhibit extremely low rates of mutation and chromosomal rearrangements. Conditions that elevate genomic instability lead to an increase in cell death and, in some cases, an increased incidence of cancer, Petes said. Earlier work by other researchers had shown that mammalian chromosomes break at particular sites under certain types of stress or upon exposure to particular drugs, he said. Evidence has suggested that chromosomes break when DNA replication – the process by which DNA copies itself before cell division – slows or stalls. However, the DNA characteristics that make particular sites vulnerable to breakage had remained unclear, he said.


The researchers slowed DNA replication in yeast cells by reducing the availability of one form of DNA polymerase, which are enzymes critical in DNA duplication. Yeast with abnormally low levels of DNA polymerase exhibited higher frequencies of chromosomal loss and aberrations than normal, resulting when broken chromosomes re-joined with others to form novel arrangements, the researchers reported. Through further examination of breakpoints in a small region of one chromosome, the researchers found that the fragile sites occurred at locations along the DNA containing "retrotransposons" called Ty elements. Retrotransposons are mobile gene segments that duplicate themselves and insert the new copies back into other sites in the genome.

The most common breakpoint involved two Ty elements in an inverted, head-to-head orientation, they reported. That finding led the researchers to suggest one possible mechanism for chromosomal breaks and rearrangements. A delay in DNA synthesis leads to an increase in single-stranded DNA, the researchers explained. While DNA is in a single-stranded form, multiple copies of retrotransposons are more likely to interact, forming a kink in the DNA. Rearrangements may occur when those kinks are improperly excised and repaired by rejoining with retrotransposons on other chromosomes. "The current findings offer the first indication that yeast have fragile sites," said Francene Lemoine, Ph.D., of Duke, first author of the study. "The finding will allow us to develop a simple model to study fragile sites in a way that can’t be done in more complex organisms."

The findings suggest that mammalian and yeast fragile sites may have common features, an indication that a common mechanism may underlie their occurrence, Petes said. Fragile sites in mammalian cells tend to duplicate late and also include sequences prone to forming kinks, or hairpin structures, like those observed in yeast. "The findings may ultimately help us better understand what goes wrong in cancer cells, an important step in developing a better plan of attack against the disease," Petes added.

Collaborators on the study include Natasha Degtyareva, of Emory University, and Kirill Lobachev, of the Georgia Institute of Technology. The work was supported by the National Institutes of Health, the National Cancer Institute and the National Science Foundation.

Kendall Morgan | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>