Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insight into DNA’s "Weakest Links" May Yield Clues to Cancer Biology

11.03.2005


The chromosomes of mammals, including humans, contain regions that are particularly prone to breaking under conditions of stress and in cancer. Now, new research by geneticists at Duke University Medical Center finds that yeast cells also contain such weak links in DNA and begins to reveal the molecular characteristics of these links that might help to explain them.



The findings, published in the March 11, 2005, issue of Cell, suggest that yeast may offer a useful model system for studying the fundamental properties of so-called DNA fragile sites, providing new insight into the chromosomal instability found in cancer cells, said the researchers. "If you look at solid tumors in humans, you see that the chromosomes of cancer cells exhibit incredible instability," said Thomas Petes, Ph.D., chair of genetics and microbiology at Duke. "Now, we have been able to mimic some of that instability in yeast cells and can begin to ask whether there is anything special that defines those places where chromosomes tend to break."

Organisms normally exhibit extremely low rates of mutation and chromosomal rearrangements. Conditions that elevate genomic instability lead to an increase in cell death and, in some cases, an increased incidence of cancer, Petes said. Earlier work by other researchers had shown that mammalian chromosomes break at particular sites under certain types of stress or upon exposure to particular drugs, he said. Evidence has suggested that chromosomes break when DNA replication – the process by which DNA copies itself before cell division – slows or stalls. However, the DNA characteristics that make particular sites vulnerable to breakage had remained unclear, he said.


The researchers slowed DNA replication in yeast cells by reducing the availability of one form of DNA polymerase, which are enzymes critical in DNA duplication. Yeast with abnormally low levels of DNA polymerase exhibited higher frequencies of chromosomal loss and aberrations than normal, resulting when broken chromosomes re-joined with others to form novel arrangements, the researchers reported. Through further examination of breakpoints in a small region of one chromosome, the researchers found that the fragile sites occurred at locations along the DNA containing "retrotransposons" called Ty elements. Retrotransposons are mobile gene segments that duplicate themselves and insert the new copies back into other sites in the genome.

The most common breakpoint involved two Ty elements in an inverted, head-to-head orientation, they reported. That finding led the researchers to suggest one possible mechanism for chromosomal breaks and rearrangements. A delay in DNA synthesis leads to an increase in single-stranded DNA, the researchers explained. While DNA is in a single-stranded form, multiple copies of retrotransposons are more likely to interact, forming a kink in the DNA. Rearrangements may occur when those kinks are improperly excised and repaired by rejoining with retrotransposons on other chromosomes. "The current findings offer the first indication that yeast have fragile sites," said Francene Lemoine, Ph.D., of Duke, first author of the study. "The finding will allow us to develop a simple model to study fragile sites in a way that can’t be done in more complex organisms."

The findings suggest that mammalian and yeast fragile sites may have common features, an indication that a common mechanism may underlie their occurrence, Petes said. Fragile sites in mammalian cells tend to duplicate late and also include sequences prone to forming kinks, or hairpin structures, like those observed in yeast. "The findings may ultimately help us better understand what goes wrong in cancer cells, an important step in developing a better plan of attack against the disease," Petes added.

Collaborators on the study include Natasha Degtyareva, of Emory University, and Kirill Lobachev, of the Georgia Institute of Technology. The work was supported by the National Institutes of Health, the National Cancer Institute and the National Science Foundation.

Kendall Morgan | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>