Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Biochemists report discovery of structure of major piece of telomerase; implications for cancer


UCLA biochemists have determined the three-dimensional structure of a major domain of telomerase, the enzyme that helps maintain telomeres – small pieces of DNA on the ends of chromosomes that act as protective caps -- allowing DNA ends to be copied completely when cells are replicated.

This is the first major piece of telomerase for which the structure is known. Telomerase plays a key role in most cancers, and this work ultimately may lead to targets for drug intervention, the scientists said. The discovery is the cover story in the March 4 issue of the journal Molecular Cell.

"Knowledge of the structure should provide insights into how telomerase works," said Juli Feigon, professor of chemistry and biochemistry at UCLA, who led the research group. "Knowing the structure also will allow the pursuit of rational, structure-based drug design, and is a critical first step. The structure provides a potential target for drug intervention."

Feigon emphasized that her laboratory conducts basic research, and is not involved in cancer treatment.

Every time a cell divides, telomeres, which act like the plastic tips on the ends of shoelaces, get shorter. In the natural aging process, the telomeres eventually get so short that cells can no longer divide, and they die. While telomerase is turned off in most types of healthy cells in our bodies, it is active in the vast majority of cancer cells, Feigon said.

Because cancer cells divide rapidly, their telomeres should get shorter more quickly than normal cells. However, because cancer cells have high levels of telomerase activity, which rebuilds the telomeres, cancer cells can maintain the length of their telomeres indefinitely. Although it is not known whether telomerase activation is just a marker for cancer cells or involved in causing it, telomerase is an attractive target for development of anti-cancer drugs by pharmaceutical companies.

The research, which was federally funded by the National Science Foundation and the National Institutes of Health, could have applications for many kinds of cancers.

The domain of telomerase whose structure the biochemists have determined is essential for telomerase to add nucleotides to telomeres. Telomerase is composed of both RNA and proteins. The entire RNA domain is composed of 451 nucleotides, represented by the letters A, C, G and U. Feigon and co-authors UCLA postdoctoral scholar Carla Theimer and graduate student Craig Blois solved the structure of an essential piece of this RNA.

Telomerase has been extremely difficult to characterize structurally because of its size and complexity, and its low level in normal cells. "This is a unique RNA structure, with distinctive features of RNA folding," said Feigon, who determined the structure with Theimer and Blois using nuclear magnetic resonance (NMR) spectroscopy.

Mutations in the RNA are associated with the inherited diseases aplastic anemia and dyskeratosis congenita, which frequently are manifested by progressive bone-marrow failure. "When you look at the sequence on paper, it doesn’t look like some of these mutations would have much effect on the overall three-dimensional structure," Feigon said. "However, it turns out, for instance, that changing a single ’C’ nucleotide to a ’U’ nucleotide has a dramatic effect on the stability of the three-dimensional fold of the RNA, which is essential for the function of the enzyme, and causes aplastic anemia in patients who have this mutation.

"There are five known disease mutations in this part of the RNA identified so far. For three of them, it was not clear why they would be a problem for telomerase, but by solving the structure, we now understand how they disrupt the folding and stability of the RNA and why they are disease mutations."

For telomerase to be active, it needs the telomerase RNA and a protein called human telomerase reverse transcriptase, which is related to the reverse transcriptase protein that is important for replicating the AIDS virus. Feigon’s laboratory has been working on the RNA. "It is a dream of mine to figure out what this RNA is doing with the protein," Feigon said. "Reverse transcriptases normally copy RNA to DNA, but do not contain RNA; in this enzyme, the protein requires the RNA component to function. The enzyme is unique because it has its own internal piece of RNA that is used to copy the DNA, but this ’template’ is only approximately 10 of the 451 nucleotides. Nobody knows what the rest of the RNA is really doing as part of this enzyme; that is what we’re trying to understand. We’re getting closer to answering this question."

The structure reveals a "pseudoknot" that is required for telomerase activity, at whose core three strands of RNA come together to form a triple helix. All vertebrate animals investigated so far have nearly the identical sequence of nucleotides through the triple helix, Theimer said. "The triple helical structure of the pseudoknot must be significant since it is conserved from humans to marsupials, birds and marine animals," Theimer said.

Feigon’s laboratory studies the three-dimensional structures of DNA and RNA, and how proteins and DNA and RNA recognize one another to switch genes on and off in cells. Her laboratory has worked on telomeres and telomerase for more than a decade.

A member of UCLA’s faculty since 1985, Feigon was the first UCLA scientist to use NMR to determine DNA and RNA structures.

Stuart Wolpert | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>