Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover that three overlapping signals in embryo help get the backbone right

10.03.2005


A major step in the development of the vertebrate embryo - the establishment of a back that morphs into a brain, spinal cord and muscles - turns out to be so important that the body uses at least three signals to make sure it happens properly.

The discovery, reported this month in the journal Developmental Cell by researchers at the University of California, Berkeley, finally explains an 80-year-old observation that revolutionized the way biologists think about embryonic and fetal development and set the stage for the stem cell debate.

That 1924 observation in newts by Hans Spemann and Hilde Mangold earned Spemann the Nobel Prize in 1935 and generated the notion that embryonic cells don’t know what they’ll become until they get the proper signal. This concept is at the root of today’s excitement over embryonic stem cells, which are basically naïve cells that, theoretically, can be stimulated to become any tissue of the body.



In fact, the proteins normally used by the embryo have recently been put to use in embryonic stem cell work. Noggin, one of the proteins isolated by the UC Berkeley research group, has been used in cultures to maintain the growth of neural stem cells.

The new UC Berkeley experiments, on frogs, show that some steps in early embryonic development are so critical that many overlapping signals are needed to ensure that cells go down the right path. The formation of the back and belly is a milestone for frogs as well as for humans and other vertebrates, occurring as it does at the beginning of the process of gastrulation, which sees front and back, head and tail, left and right established and the first appearance of a recognizable body plan. If this step fails, the embryo eventually dies.

"Gastrulation and the process of defining your back-belly axis is such an important step that you actually have multiple proteins being expressed there, just in case one of them fails, the others can compensate," said lead author Mustafa Khokha (pronounced KO’ ka), a post-doctoral fellow at UC Berkeley and an attending physician in pediatric critical care at UC San Francisco. "Redundancy is designed to make the embryo robust, so as to avoid birth defects."

The three proteins identified in the team’s report are among at least five that block other signals to allow the back, or dorsal, structures to form. Thirteen years ago, Richard Harland, professor and chair of the Department of Molecular and Cell Biology at UC Berkeley, showed that injecting one of these factors, noggin, into the belly of an embryo caused surrounding tissues to develop into structures normally found on the back. Despite repeated attempts, however, no one could show that blocking signals like noggin did the opposite. In fact, blocking noggin and the other known factors seemed to have relatively little effect on the embryo, raising doubts about the natural role of these proteins in early development.

Now, using very young embryos of the laboratory frog Xenopus tropicalis, Khokha, Harland and their UC Berkeley colleagues were able to block three of the five factors at once, and this time found dramatic changes in the embryo. "When we removed these signals, all the tissues that form on the back of the embryo - brain, spinal cord and muscles - were lost," Khokha said. "Not only were back tissues lost, but belly tissues were greatly expanded - the whole embryo became repatterned, so it’s more belly-like than it is back-like. So, these signals are necessary for the pattern to occur properly."

"We first found these signals in 1992, and since then, we’ve figured out how they work. But because there are so many of them, it’s been difficult to really nail down that they are essential," Harland said. "We’ve had to knock down three of them to prove that they’re essential."

In the 1920s, working at the University of Freiburg in Germany, Spemann and his student Mangold found that as the mass of cells in the embryo started to take form, a region in the embryo - what they called the "organizer" - seemed to be the source of signals to nearby cells, telling them to form back structures. What clinched their experiment was taking the organizer from one embryo - in their experiments, a newt - and implanting it into another. "They actually produced a Siamese twin embryo," Khokha said. "The piece they cut out from the donor embryo and transplanted into the host embryo was able to redefine the structures in the host embryo to make back structures where the belly would normally form - to induce another head, brain and spinal cord. The tissue they transplanted sent signals to the host to create these new structures."

Since then, scientists have searched for the signaling factors secreted by Spemann’s organizer. Dubbed bone morphogenetic protein (BMP) antagonists, these factors block a process that creates belly structures and clear the way for back development. "It is really in the last 20 years that it has been possible to tease these apart cleanly and develop assays that are good enough to find the molecules involved in the normal process," Harland said.

Postdoctoral fellow Bill Smith and Harland found the first of these BMP antagonists, noggin, in 1992, confirming its activity by repeating Spemann and Mangold’s experiment but injecting noggin instead of implanting an organizer from another embryo. They also discovered xnr3, and other researchers isolated three more factors - chordin, follistatin and cerberus. While Harland and his UC Berkeley colleagues found numerous roles for noggin at later stages of development, they were unable to prove that noggin was essential to brain and spinal cord development. Blocking any one of these five factors had only a minimal effect on the fate of the embryo.

Khokha and Harland decided to try blocking more than one, and chose to work in embryos of the frog Xenopus tropicalis, a close relative of the more common laboratory frog Xenopus laevis. X. tropicalis is easier to work with, because it, like humans, is diploid, that is, it has only two copies of each gene, instead of four, as in the tetraploid X. laevis. Lab specimens of X. tropicalis also have less genetic variation than outbred populations of X. laevis, and the genome of X. tropicalis has been sequenced. Harland is pioneering the use of X. tropicalis in genetic studies, creating numerous mutants that can be used to explore the role of various genes in development. Using standard knock-out techniques, their team inactivated the function of these BMP antagonists in various combinations, finding the most dramatic effect by simultaneously knocking out noggin, follistatin, and chordin.

Harland noted that the signaling pathway they blocked is one of several developmental pathways proceeding at the same time in the embryo. While BMP antagonists allow the formation of the back and belly, another group of antagonists creates the head and tail, while a third sets up left and right. "It’s been interesting that what one thinks of embryologically as the dominant signaling center actually is a source of a cocktail of inhibitors," he said, "so inhibition is just as specific a signal in the embryo as is an activating signal."

Since they discovered noggin, Harland and his colleagues have shown that in later stages of development, this protein factor is critical in laying down cartilage to make joints, and even plays an important role after birth. Recently, he and Stanford University colleagues showed that noggin may be important in preventing the premature fusion of the bones in the skull, and thus may be critical to allowing the brain to grow larger after birth. All of these findings are from mice or amphibians, but the researchers say that the same is almost certain to be the case in humans.

"One of the things that’s been nicely shown is that the organizer itself, while it was originally identified in newts, is conserved through all vertebrate evolution," Khokha said. "If you cut out a similar tissue and transplant it in a mouse, you also get the Siamese twin phenomenon. So, we expect it to also be true in humans."

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>