Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Computational tool predicts how drugs work in cells, advancing efforts to design better medicines


Boston University biomedical engineers, chemists collaborate on novel method

The ability to select and develop compounds that act on specific cellular targets has just gained a computational ally -- a mathematical algorithm that predicts the precise effects a given compound will have on a cell’s molecular components or chemical processes. Using this tool, drug developers can design compounds that will act on only desired gene and protein targets, eliciting therapeutic responses free of unwanted side effects.

The research, which appears in the March 4 issue of Nature Biotechnology, reports on collaborative work by a team of biomedical engineers and chemists at Boston University. The team was led by Tim Gardner, an assistant professor in the College of Engineering’s Department of Biomedical Engineering (BME) and its Center for BioDynamics, and James Collins, a professor in BME and co-director of the Center for BioDynamics, and done in collaboration with Scott Schaus and Sean Elliott, assistant professors in BU’s Department of Chemistry and Center for Chemical Methodology and Library Development (CMLD).

Although drug development is an active field of research, there have been few ways to predict optimal drug design. The molecular targets of many drug candidates are unknown and are often difficult to tease out from among the thousands of gene products found in a typical organism. This "blindness" in the welter of potential cellular targets means that the process of designing therapeutic drugs is neither precise nor efficient.

The BU research team sought to bring precision and efficiency to this discovery process. The team used a combination of computational and experimental methods to build and verify their tool, first using a reverse-engineering approach to decipher the multitude of regulatory networks operating among genes in a simple organism, then testing the ability of the resulting network models to predict gene and pathway targets for a variety of drug treatments. Finally, they used the tool to predict the molecular targets of a potential new anticancer compound, PTSB, shown in CMLD studies to inhibit growth in the test organism (baker’s yeast) as well as in human small lung carcinoma cells.

Their algorithm predicted, and subsequent experiments verified, that PTSB acted on thioredoxin and thioredoxin reductase, findings that not only validate the tool’s capability but could also pave the way to investigations of a potentially new class of therapeutic compounds.

Ann Marie Menting | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Bioluminescent sensor causes brain cells to glow in the dark
28.10.2016 | Vanderbilt University

nachricht Activation of 2 genes linked to development of atherosclerosis
28.10.2016 | Brigham and Women's Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>