Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computational tool predicts how drugs work in cells, advancing efforts to design better medicines

10.03.2005


Boston University biomedical engineers, chemists collaborate on novel method



The ability to select and develop compounds that act on specific cellular targets has just gained a computational ally -- a mathematical algorithm that predicts the precise effects a given compound will have on a cell’s molecular components or chemical processes. Using this tool, drug developers can design compounds that will act on only desired gene and protein targets, eliciting therapeutic responses free of unwanted side effects.

The research, which appears in the March 4 issue of Nature Biotechnology, reports on collaborative work by a team of biomedical engineers and chemists at Boston University. The team was led by Tim Gardner, an assistant professor in the College of Engineering’s Department of Biomedical Engineering (BME) and its Center for BioDynamics, and James Collins, a professor in BME and co-director of the Center for BioDynamics, and done in collaboration with Scott Schaus and Sean Elliott, assistant professors in BU’s Department of Chemistry and Center for Chemical Methodology and Library Development (CMLD).


Although drug development is an active field of research, there have been few ways to predict optimal drug design. The molecular targets of many drug candidates are unknown and are often difficult to tease out from among the thousands of gene products found in a typical organism. This "blindness" in the welter of potential cellular targets means that the process of designing therapeutic drugs is neither precise nor efficient.

The BU research team sought to bring precision and efficiency to this discovery process. The team used a combination of computational and experimental methods to build and verify their tool, first using a reverse-engineering approach to decipher the multitude of regulatory networks operating among genes in a simple organism, then testing the ability of the resulting network models to predict gene and pathway targets for a variety of drug treatments. Finally, they used the tool to predict the molecular targets of a potential new anticancer compound, PTSB, shown in CMLD studies to inhibit growth in the test organism (baker’s yeast) as well as in human small lung carcinoma cells.

Their algorithm predicted, and subsequent experiments verified, that PTSB acted on thioredoxin and thioredoxin reductase, findings that not only validate the tool’s capability but could also pave the way to investigations of a potentially new class of therapeutic compounds.

Ann Marie Menting | EurekAlert!
Further information:
http://www.bu.edu
http://www.bu.edu/chemistry/
http://www.bu.edu/dbin/bme/

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>