Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse gene shows new mechanism behind cardiac infarction in man

08.03.2005


A gene that, in different variants, increases or decreases the level of atherosclerosis has been identified in mice. The corresponding human gene has been shown to play a role in the development of myocardial infarction. The results of the study is published this week on Nature Genetics Online.



Researchers at Karolinska Institutet, in collaboration with the Jackson Laboratory in the USA, AstraZeneca and a Japanese research group, have scrutinised an area on chromosome 1 that is of demonstrable importance to the development of arteriosclerosis. The TNFSF4 gene was identified as the one responsible, as mice with mutations in this gene displayed a lower degree of atherosclerosis, while mice with more active variants of the gene displayed the opposite.

Studies of two patient groups revealed that a certain variant of the human homologue of the gene was more common in people who had a history of cardiac infarction than those without. “This is an example of how an unbiased genetic strategy based on a mice model can teach us more about common human diseases,” says researcher Jacob Lagercrantz of the Gustav V research institute, Karolinska Institutet.


The gene codes for a protein called OX40L, which is involved in the activation of immunological T cells. These cells, in turn, play an important role in the pathogenesis of atherosclerosis and of a number of chronic inflammatory diseases. The new finding will spur further research into the relationship between the protein and cardiac infarction. Hopefully it will offer a new therapeutic technique for the treatment of atherosclerosis and thus reduce the risk of cardiac infarction.

Sabina Bossi | alfa
Further information:
http://info.ki.se/index_en.html

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>