Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Conserved amino acids play both structural and mechanistic roles in sandwich-like protein

08.03.2005


Scientists at Rice University report their findings in PNAS



The question of whether amino acids in sandwich-like proteins are there to stabilize the structure or to speed up the protein-folding process is best answered by "all of the above," according to researchers at Rice University in Houston. This discovery, reported in today’s issue of the Proceedings of the National Academy of Sciences, could benefit future research on treatments for diseases related to misfolded proteins, such as Alzheimer’s and Huntington’s.

The Rice scientists studied azurin – a copper-containing protein essential to electron transfer. Azurin is part of a group of proteins that fold into a sandwich-like structure consisting of two sheets of amino acids meshed together. Nearly 70 superfamilies of proteins of varying makeup have this sandwich-like structure, but they all have eight particular amino acids in common. Previous studies had shown that these eight amino acids were important to define the sandwich-like structure, but the exact role was unknown.


"Why are these eight amino acids invariant across all sandwich-like proteins?" asked principal investigator Pernilla Wittung-Stafshede, associate professor of biochemistry and cell biology. "Are they conserved to direct the protein-folding reaction, or are they selected to stabilize the final protein structure? In our paper, we unravel an unprecedented answer to this question."

Wittung-Stafshede and graduate student Corey Wilson analyzed the purpose of six of the eight amino acids by exchanging a nonessential amino acid for each of them and monitoring the effect on the protein structure. (For technical reasons, the other two amino acids could not be studied.) The researchers found that three of the amino acids are important for stabilizing the final structure of the protein, and three serve to direct the process of protein folding.

"We directly demonstrated that in one protein within the large sandwich-like protein family, evolution has indeed preserved amino acids for mechanical reasons," Wittung-Stafshede said. "We believe that our discovery is novel and that it gives important new insight into the interplay between protein evolution, structure and folding."

The researchers speculate that their conclusions about the azurin protein apply to most members of the sandwich-like protein family, but testing on other specific proteins must confirm that.

"Better understanding of protein folding is crucial for curing human diseases directly related to misfolding of proteins, and it is also important for the design and improvement of therapeutic enzymes," Wittung-Stafshede said.

B.J. Almond | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>