Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Conserved amino acids play both structural and mechanistic roles in sandwich-like protein

08.03.2005


Scientists at Rice University report their findings in PNAS



The question of whether amino acids in sandwich-like proteins are there to stabilize the structure or to speed up the protein-folding process is best answered by "all of the above," according to researchers at Rice University in Houston. This discovery, reported in today’s issue of the Proceedings of the National Academy of Sciences, could benefit future research on treatments for diseases related to misfolded proteins, such as Alzheimer’s and Huntington’s.

The Rice scientists studied azurin – a copper-containing protein essential to electron transfer. Azurin is part of a group of proteins that fold into a sandwich-like structure consisting of two sheets of amino acids meshed together. Nearly 70 superfamilies of proteins of varying makeup have this sandwich-like structure, but they all have eight particular amino acids in common. Previous studies had shown that these eight amino acids were important to define the sandwich-like structure, but the exact role was unknown.


"Why are these eight amino acids invariant across all sandwich-like proteins?" asked principal investigator Pernilla Wittung-Stafshede, associate professor of biochemistry and cell biology. "Are they conserved to direct the protein-folding reaction, or are they selected to stabilize the final protein structure? In our paper, we unravel an unprecedented answer to this question."

Wittung-Stafshede and graduate student Corey Wilson analyzed the purpose of six of the eight amino acids by exchanging a nonessential amino acid for each of them and monitoring the effect on the protein structure. (For technical reasons, the other two amino acids could not be studied.) The researchers found that three of the amino acids are important for stabilizing the final structure of the protein, and three serve to direct the process of protein folding.

"We directly demonstrated that in one protein within the large sandwich-like protein family, evolution has indeed preserved amino acids for mechanical reasons," Wittung-Stafshede said. "We believe that our discovery is novel and that it gives important new insight into the interplay between protein evolution, structure and folding."

The researchers speculate that their conclusions about the azurin protein apply to most members of the sandwich-like protein family, but testing on other specific proteins must confirm that.

"Better understanding of protein folding is crucial for curing human diseases directly related to misfolding of proteins, and it is also important for the design and improvement of therapeutic enzymes," Wittung-Stafshede said.

B.J. Almond | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>