Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Basis for DNA ejection from single phage particles

08.03.2005


Studying phage, a primitive class of virus that infects bacteria by injecting its genomic DNA into host cells, researchers have gained insight into the driving force behind this poorly understood injection process, which has been proposed in the past to occur through the release of pressure accumulated within the viral particle itself.



Almost all phages (also known as bacteriophages) are formed of a capsid structure, or head, in which the viral genome is packaged during morphogenesis, and a tail structure that ensures the attachment of the phage to the host bacteria. A common feature of phages is that during infection, only their genome is transferred to the bacterial host’s cytoplasm, whereas the capsid and tail remain bound to the cell surface. This situation is very different from that found in most eukaryotic viruses, including those that infect humans, in that the envelope of these viruses fuses with the host plasma membrane so that the genome is delivered without directly contacting the membrane.

Phage nucleic acid transport poses a fascinating biophysical problem: Transport is unidirectional and linear; it concerns a unique molecule the size of which may represent 50 times that of the bacterium. The driving force for DNA transport is still poorly defined. It was hypothesized that the internal pressure built during packaging of the DNA in the phage capsid was responsible for DNA ejection. This pressure results from the condensation of the DNA during morphogenesis – for example, another group recently showed that the pressure at the final stage of encapsulation for a particular bacteriophage reached a value of 60 atomospheres, which is close to ten times the pressure inside a bottle of champagne. In the new work reported this week, researchers have evaluated whether the energy thus stored is sufficient to permit phage DNA ejection, or only to initiate that process.


The researchers used fluorescently labeled phage DNA to investigate in real time (and with a resolution time of 750 milliseconds) the dynamics of DNA ejection from single phages. The ejected DNA was measured at different stages of the ejection process after being stretched by applied hydrodynamic flow. The study demonstrated that DNA release is not an all-or-none process, but rather is unexpectedly complex. DNA release occurred at a very high rate, reaching 75,000 base pairs of DNA/sec, but in a stepwise fashion. Pausing times were observed during ejection, and ejection was transiently arrested at definite positions of the genome in close proximity to genetically defined physical interruptions in the DNA. The authors discuss the relevance of this stepwise ejection to the transfer of phage DNA in vivo.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com
http://www.cell.com

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>