Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Basis for DNA ejection from single phage particles

08.03.2005


Studying phage, a primitive class of virus that infects bacteria by injecting its genomic DNA into host cells, researchers have gained insight into the driving force behind this poorly understood injection process, which has been proposed in the past to occur through the release of pressure accumulated within the viral particle itself.



Almost all phages (also known as bacteriophages) are formed of a capsid structure, or head, in which the viral genome is packaged during morphogenesis, and a tail structure that ensures the attachment of the phage to the host bacteria. A common feature of phages is that during infection, only their genome is transferred to the bacterial host’s cytoplasm, whereas the capsid and tail remain bound to the cell surface. This situation is very different from that found in most eukaryotic viruses, including those that infect humans, in that the envelope of these viruses fuses with the host plasma membrane so that the genome is delivered without directly contacting the membrane.

Phage nucleic acid transport poses a fascinating biophysical problem: Transport is unidirectional and linear; it concerns a unique molecule the size of which may represent 50 times that of the bacterium. The driving force for DNA transport is still poorly defined. It was hypothesized that the internal pressure built during packaging of the DNA in the phage capsid was responsible for DNA ejection. This pressure results from the condensation of the DNA during morphogenesis – for example, another group recently showed that the pressure at the final stage of encapsulation for a particular bacteriophage reached a value of 60 atomospheres, which is close to ten times the pressure inside a bottle of champagne. In the new work reported this week, researchers have evaluated whether the energy thus stored is sufficient to permit phage DNA ejection, or only to initiate that process.


The researchers used fluorescently labeled phage DNA to investigate in real time (and with a resolution time of 750 milliseconds) the dynamics of DNA ejection from single phages. The ejected DNA was measured at different stages of the ejection process after being stretched by applied hydrodynamic flow. The study demonstrated that DNA release is not an all-or-none process, but rather is unexpectedly complex. DNA release occurred at a very high rate, reaching 75,000 base pairs of DNA/sec, but in a stepwise fashion. Pausing times were observed during ejection, and ejection was transiently arrested at definite positions of the genome in close proximity to genetically defined physical interruptions in the DNA. The authors discuss the relevance of this stepwise ejection to the transfer of phage DNA in vivo.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com
http://www.cell.com

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>