Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Basis for DNA ejection from single phage particles

08.03.2005


Studying phage, a primitive class of virus that infects bacteria by injecting its genomic DNA into host cells, researchers have gained insight into the driving force behind this poorly understood injection process, which has been proposed in the past to occur through the release of pressure accumulated within the viral particle itself.



Almost all phages (also known as bacteriophages) are formed of a capsid structure, or head, in which the viral genome is packaged during morphogenesis, and a tail structure that ensures the attachment of the phage to the host bacteria. A common feature of phages is that during infection, only their genome is transferred to the bacterial host’s cytoplasm, whereas the capsid and tail remain bound to the cell surface. This situation is very different from that found in most eukaryotic viruses, including those that infect humans, in that the envelope of these viruses fuses with the host plasma membrane so that the genome is delivered without directly contacting the membrane.

Phage nucleic acid transport poses a fascinating biophysical problem: Transport is unidirectional and linear; it concerns a unique molecule the size of which may represent 50 times that of the bacterium. The driving force for DNA transport is still poorly defined. It was hypothesized that the internal pressure built during packaging of the DNA in the phage capsid was responsible for DNA ejection. This pressure results from the condensation of the DNA during morphogenesis – for example, another group recently showed that the pressure at the final stage of encapsulation for a particular bacteriophage reached a value of 60 atomospheres, which is close to ten times the pressure inside a bottle of champagne. In the new work reported this week, researchers have evaluated whether the energy thus stored is sufficient to permit phage DNA ejection, or only to initiate that process.


The researchers used fluorescently labeled phage DNA to investigate in real time (and with a resolution time of 750 milliseconds) the dynamics of DNA ejection from single phages. The ejected DNA was measured at different stages of the ejection process after being stretched by applied hydrodynamic flow. The study demonstrated that DNA release is not an all-or-none process, but rather is unexpectedly complex. DNA release occurred at a very high rate, reaching 75,000 base pairs of DNA/sec, but in a stepwise fashion. Pausing times were observed during ejection, and ejection was transiently arrested at definite positions of the genome in close proximity to genetically defined physical interruptions in the DNA. The authors discuss the relevance of this stepwise ejection to the transfer of phage DNA in vivo.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com
http://www.cell.com

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>