Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The circadian clock: Understanding nature’s timepiece

07.03.2005


New light on a complex mechanism



A cluster of brain cells less than half the size of a pencil eraser tells you when to wake up, when to be hungry and when it’s time to go to sleep. The same cells also cause you to be disoriented after you’ve flown across multiple time zones. The human circadian clock, comprised of about 20,000 time-keeping cells, has mystified scientists since it was pinpointed in the brain about 30 years ago. Now, a researcher at the University of Calgary is getting a little bit closer to understanding how it ticks.

Dr. Michael Antle, a neuroscientist in the U of C’s Department of Psychology, has conclusively shown that the 20,000 cells are organized in a complex network of groups that perform different functions – contrary to the previously held belief that each cell did the same thing. Antle, an emerging leader in the field, has two new papers on the subject: one is featured on the March cover of the prestigious Trends in Neurosciences, and another is due out in a forthcoming issue of the Journal of Neurosciences.


"There are enormous health, safety and economic benefits to figuring out how the circadian clock works," Antle says. "We are probably still at least 10 years away from developing a pill that could reset your circadian clock to eliminate jet lag, but this new perspective in how the cells are organized definitely improves our understanding."

For every hour of time change a person experiences it takes about a day to fully adjust. Workers on rotating shifts are constantly struggling to adapt and they experience well-documented health problems as a result. For example, one study found that nurses who work nights or rotating shifts are at greater risk for developing breast cancer than their counterparts on regular day shifts.

"If your sleep schedule is constantly changing, you can’t help but be less alert," Antle says. "When you look at disasters such as plane crashes, or Three Mile Island or Chernobyl, there is often a sleep-deprived person with critical responsibilities behind it all. When someone shifts their schedule, we want to find a way to shift their body with them so they remain alert, working optimally and making the right decisions."

Antle also hopes to experiment further with a technique that involves resetting the circadian clock by altering serotonin levels, the same neurotransmitter that the anti-depressant Prozac targets. He says it could one day be possible to move people ahead eight hours simply with a pill and light therapy.

All terrestrial organisms – even single-celled organisms – have circadian rhythms. In some cases, the circadian clock contributes to survival strategies as simple as not drying out when the sun comes up. Plants and animals have their own environmental niches and also unique temporal niches, as any cat owner can tell you.

Gregory Harris | EurekAlert!
Further information:
http://www.ucalgary.ca

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>