Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The circadian clock: Understanding nature’s timepiece

07.03.2005


New light on a complex mechanism



A cluster of brain cells less than half the size of a pencil eraser tells you when to wake up, when to be hungry and when it’s time to go to sleep. The same cells also cause you to be disoriented after you’ve flown across multiple time zones. The human circadian clock, comprised of about 20,000 time-keeping cells, has mystified scientists since it was pinpointed in the brain about 30 years ago. Now, a researcher at the University of Calgary is getting a little bit closer to understanding how it ticks.

Dr. Michael Antle, a neuroscientist in the U of C’s Department of Psychology, has conclusively shown that the 20,000 cells are organized in a complex network of groups that perform different functions – contrary to the previously held belief that each cell did the same thing. Antle, an emerging leader in the field, has two new papers on the subject: one is featured on the March cover of the prestigious Trends in Neurosciences, and another is due out in a forthcoming issue of the Journal of Neurosciences.


"There are enormous health, safety and economic benefits to figuring out how the circadian clock works," Antle says. "We are probably still at least 10 years away from developing a pill that could reset your circadian clock to eliminate jet lag, but this new perspective in how the cells are organized definitely improves our understanding."

For every hour of time change a person experiences it takes about a day to fully adjust. Workers on rotating shifts are constantly struggling to adapt and they experience well-documented health problems as a result. For example, one study found that nurses who work nights or rotating shifts are at greater risk for developing breast cancer than their counterparts on regular day shifts.

"If your sleep schedule is constantly changing, you can’t help but be less alert," Antle says. "When you look at disasters such as plane crashes, or Three Mile Island or Chernobyl, there is often a sleep-deprived person with critical responsibilities behind it all. When someone shifts their schedule, we want to find a way to shift their body with them so they remain alert, working optimally and making the right decisions."

Antle also hopes to experiment further with a technique that involves resetting the circadian clock by altering serotonin levels, the same neurotransmitter that the anti-depressant Prozac targets. He says it could one day be possible to move people ahead eight hours simply with a pill and light therapy.

All terrestrial organisms – even single-celled organisms – have circadian rhythms. In some cases, the circadian clock contributes to survival strategies as simple as not drying out when the sun comes up. Plants and animals have their own environmental niches and also unique temporal niches, as any cat owner can tell you.

Gregory Harris | EurekAlert!
Further information:
http://www.ucalgary.ca

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>