Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery clarifies role of peptide in biological clock

07.03.2005


Uncoupling the clock

A biologist at Washington University in St. Louis is giving the VIP treatment to laboratory mice in hopes of unraveling more clues about our biological clock. VIP is not "very important person," but vasoactive intestinal polypeptide (VIP), a neuropeptide originally found in the gut, that is also made by a specialized group of neurons in the brain.

Erik Herzog, Ph.D., Washington University assistant professor of Biology in Arts & Sciences, has discovered that VIP is needed by the brain’s biological clock to coordinate daily rhythms in behavior and physiology. Neurons in the biological clock, an area called the suprachiasmatic nucleus (SCN), keep 24-hour time and are normally synchronized as a well-oiled marching band coming onto the field at half time. Herzog and graduate student, Sara Aton, found that mice lacking the gene that makes VIP or lacking the receptor molecule for VIP suffer from internal de-synchrony. When they recorded the electrical activity of SCN neurons from these mice, they found that many had lost their beat while others were cycling but unable to synch to each other.



But when Herzog and Aton added VIP to the mice cells, the synchronicity was restored, showing that VIP couples pacemaker cells and drives rhythms in slave cells.

"VIP between SCN neurons is like a rubber band between the pendulums of two grandfather clocks, helping to synchronize their timing. Some researchers had proposed that knocking out VIP or the receptor for it stopped the clock," Herzog said. "We’ve found that the biological clock is still running, but its internal synchrony is uncoordinated. This causes irregular patterns of sleep and wake, for example."

The study was published on-line in Nature Neuroscience on March 6, 2005. Herzog’s work is funded by the National Institutes of Health.

"In a light-dark schedule, these mice looked normal, but as soon as you leave off the lights, they reveal their internal de-synchrony," he said. "The mice showed multiple rhythms, getting up both earlier and earlier and later and later on subsequent days so that their daily activity patterns were splitting apart."

Herzog and Aton recorded neuron activity from the SCN using a multielectrode array with 60 electrodes upon which they place SCN cells, a "clock in a dish." This enabled them to record data from many cells for many days.

"We found that the VIP mutants, indeed, can generate circadian rhythms, but the neurons can’t synchronize to each other," Herzog said. "We showed that we could restore rhythms to the arrhythmic neurons and synchrony to the SCN by providing VIP once a day."

The SCN is a part of the hypothalamus that can be found on the bottom of the brain just above the roof of your mouth where your optic nerves cross. There are roughly 10,000 neurons in this nucleus on either side of your brain. The timekeeping mechanism in these cells depends on daily cycles in gene activity.

Herzog found in his latest study that the percentage of rhythmic cells in the mutant SCN was very low, and he believes these rhythmic neurons are specialized circadian pacemakers.

"We suspect that at least some of the pace making cells in the SCN are VIP cells, and one of the things we’ll try to do next is confirm this. We will also try to understand better how VIP synchronizes pacemakers," he said.

It is surprising that the process is regulated by a peptide, usually a slow signaling agent, rather than a neurotransmitter, associated with fast events, Herzog said.

"We’re trying to understand the mechanics of how the system synchronizes and the secondary messenger systems as well," Herzog said. "We’re getting closer to the heart and soul of circadian rhythmicity by uncoupling the (biological) clock."

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>