Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery clarifies role of peptide in biological clock

07.03.2005


Uncoupling the clock

A biologist at Washington University in St. Louis is giving the VIP treatment to laboratory mice in hopes of unraveling more clues about our biological clock. VIP is not "very important person," but vasoactive intestinal polypeptide (VIP), a neuropeptide originally found in the gut, that is also made by a specialized group of neurons in the brain.

Erik Herzog, Ph.D., Washington University assistant professor of Biology in Arts & Sciences, has discovered that VIP is needed by the brain’s biological clock to coordinate daily rhythms in behavior and physiology. Neurons in the biological clock, an area called the suprachiasmatic nucleus (SCN), keep 24-hour time and are normally synchronized as a well-oiled marching band coming onto the field at half time. Herzog and graduate student, Sara Aton, found that mice lacking the gene that makes VIP or lacking the receptor molecule for VIP suffer from internal de-synchrony. When they recorded the electrical activity of SCN neurons from these mice, they found that many had lost their beat while others were cycling but unable to synch to each other.



But when Herzog and Aton added VIP to the mice cells, the synchronicity was restored, showing that VIP couples pacemaker cells and drives rhythms in slave cells.

"VIP between SCN neurons is like a rubber band between the pendulums of two grandfather clocks, helping to synchronize their timing. Some researchers had proposed that knocking out VIP or the receptor for it stopped the clock," Herzog said. "We’ve found that the biological clock is still running, but its internal synchrony is uncoordinated. This causes irregular patterns of sleep and wake, for example."

The study was published on-line in Nature Neuroscience on March 6, 2005. Herzog’s work is funded by the National Institutes of Health.

"In a light-dark schedule, these mice looked normal, but as soon as you leave off the lights, they reveal their internal de-synchrony," he said. "The mice showed multiple rhythms, getting up both earlier and earlier and later and later on subsequent days so that their daily activity patterns were splitting apart."

Herzog and Aton recorded neuron activity from the SCN using a multielectrode array with 60 electrodes upon which they place SCN cells, a "clock in a dish." This enabled them to record data from many cells for many days.

"We found that the VIP mutants, indeed, can generate circadian rhythms, but the neurons can’t synchronize to each other," Herzog said. "We showed that we could restore rhythms to the arrhythmic neurons and synchrony to the SCN by providing VIP once a day."

The SCN is a part of the hypothalamus that can be found on the bottom of the brain just above the roof of your mouth where your optic nerves cross. There are roughly 10,000 neurons in this nucleus on either side of your brain. The timekeeping mechanism in these cells depends on daily cycles in gene activity.

Herzog found in his latest study that the percentage of rhythmic cells in the mutant SCN was very low, and he believes these rhythmic neurons are specialized circadian pacemakers.

"We suspect that at least some of the pace making cells in the SCN are VIP cells, and one of the things we’ll try to do next is confirm this. We will also try to understand better how VIP synchronizes pacemakers," he said.

It is surprising that the process is regulated by a peptide, usually a slow signaling agent, rather than a neurotransmitter, associated with fast events, Herzog said.

"We’re trying to understand the mechanics of how the system synchronizes and the secondary messenger systems as well," Herzog said. "We’re getting closer to the heart and soul of circadian rhythmicity by uncoupling the (biological) clock."

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>