Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery clarifies role of peptide in biological clock

07.03.2005


Uncoupling the clock

A biologist at Washington University in St. Louis is giving the VIP treatment to laboratory mice in hopes of unraveling more clues about our biological clock. VIP is not "very important person," but vasoactive intestinal polypeptide (VIP), a neuropeptide originally found in the gut, that is also made by a specialized group of neurons in the brain.

Erik Herzog, Ph.D., Washington University assistant professor of Biology in Arts & Sciences, has discovered that VIP is needed by the brain’s biological clock to coordinate daily rhythms in behavior and physiology. Neurons in the biological clock, an area called the suprachiasmatic nucleus (SCN), keep 24-hour time and are normally synchronized as a well-oiled marching band coming onto the field at half time. Herzog and graduate student, Sara Aton, found that mice lacking the gene that makes VIP or lacking the receptor molecule for VIP suffer from internal de-synchrony. When they recorded the electrical activity of SCN neurons from these mice, they found that many had lost their beat while others were cycling but unable to synch to each other.



But when Herzog and Aton added VIP to the mice cells, the synchronicity was restored, showing that VIP couples pacemaker cells and drives rhythms in slave cells.

"VIP between SCN neurons is like a rubber band between the pendulums of two grandfather clocks, helping to synchronize their timing. Some researchers had proposed that knocking out VIP or the receptor for it stopped the clock," Herzog said. "We’ve found that the biological clock is still running, but its internal synchrony is uncoordinated. This causes irregular patterns of sleep and wake, for example."

The study was published on-line in Nature Neuroscience on March 6, 2005. Herzog’s work is funded by the National Institutes of Health.

"In a light-dark schedule, these mice looked normal, but as soon as you leave off the lights, they reveal their internal de-synchrony," he said. "The mice showed multiple rhythms, getting up both earlier and earlier and later and later on subsequent days so that their daily activity patterns were splitting apart."

Herzog and Aton recorded neuron activity from the SCN using a multielectrode array with 60 electrodes upon which they place SCN cells, a "clock in a dish." This enabled them to record data from many cells for many days.

"We found that the VIP mutants, indeed, can generate circadian rhythms, but the neurons can’t synchronize to each other," Herzog said. "We showed that we could restore rhythms to the arrhythmic neurons and synchrony to the SCN by providing VIP once a day."

The SCN is a part of the hypothalamus that can be found on the bottom of the brain just above the roof of your mouth where your optic nerves cross. There are roughly 10,000 neurons in this nucleus on either side of your brain. The timekeeping mechanism in these cells depends on daily cycles in gene activity.

Herzog found in his latest study that the percentage of rhythmic cells in the mutant SCN was very low, and he believes these rhythmic neurons are specialized circadian pacemakers.

"We suspect that at least some of the pace making cells in the SCN are VIP cells, and one of the things we’ll try to do next is confirm this. We will also try to understand better how VIP synchronizes pacemakers," he said.

It is surprising that the process is regulated by a peptide, usually a slow signaling agent, rather than a neurotransmitter, associated with fast events, Herzog said.

"We’re trying to understand the mechanics of how the system synchronizes and the secondary messenger systems as well," Herzog said. "We’re getting closer to the heart and soul of circadian rhythmicity by uncoupling the (biological) clock."

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>