Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two chemicals boost immune cells’ ability to fight HIV without gene therapy

07.03.2005


UCLA AIDS Institute study

A UCLA AIDS Institute study has discovered that two chemical compounds may help the immune systems of HIV-infected persons fight the disease without invasive gene therapy. Presented March 5 at the 2005 Palm Springs Symposium on HIV/AIDS, the new research demonstrates that the new chemicals activate telomerase -- a protein that boosts immune cells’ ability to divide, enabling them to continue destroying HIV-infected cells.

"The immune cells that fight HIV naturally produce telomerase during the infection’s early phase, but stop once HIV becomes a chronic condition," explained Rita Effros, Ph.D., Plott Endowed Chair in Gerontology and a professor of pathology at the David Geffen School of Medicine at UCLA. "The two compounds switched telomerase back on in the cells."



In earlier research, the UCLA team showed that inserting the telomerase gene into the immune cells of an HIV-infected person prevented the cells from aging prematurely. The telomerase enabled the immune cells to divide indefinitely, stimulated their production of a viral-fighting molecule and prolonged their power to kill HIV-infected cells.

In this study, the scientists isolated immune cells from the blood of HIV-infected persons and cultured the cells with the chemical compounds. They were surprised to see that the compounds produced the same three changes in the cells as those created by the gene therapy. "Lo and behold, we discovered we didn’t need to use gene therapy to reactivate the telomerase and strengthen the immune system’s capacity to stave off HIV," said Effros, a member of the UCLA AIDS Institute. "We were thrilled to see we could create the same changes in the cells without relying on an invasive procedure."

Immune cells that battle HIV must constantly divide in order to continue performing their protective functions. The massive amount of division prematurely shortens these cells’ ends, or telomeres, ultimately exhausting the immune system.

UCLA’s previous research shows that telomerase rejuvenates the telomeres and allows the immune cells to remain youthful and active as they replicate under HIV’s attack. Drugs that activate telomerase also offer therapeutic potential for a wide spectrum of degenerative diseases and chronic conditions in which cellular aging plays a role. "I’m really excited by our findings. This progress moves us one step closer to drugs that work by switching telomerase on permanently and keeping the immune cells young and strong in their fight against infection," said Effros. "These therapies are also easier to develop than gene-therapy drugs."

The research was supported by a grant from the National Institute of Allergy and Infectious Diseases and a University of California Discovery Grant. Geron provided additional funding and the chemical compounds for use in the laboratory.

Effros’ team included doctoral student Steven Fauce; Beth Jamieson, Ph.D., assistant professor hematology-oncology; and Otto Yang, Ph.D., associate professor of infectious diseases, all from UCLA.

Elaine Schmidt | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>