Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers discover a good side to cholesterol in controlling cell signals


Cholesterol, often stigmatized for its role in heart disease, has long been known to be essential for the health of the fat-laden membranes that surround individual cells. New findings by researchers at UT Southwestern Medical Center highlight a novel role for cholesterol inside the cell itself – anchoring a signaling pathway linked to cell division and cancer.

These findings appear in the March 4 issue of Science and are available online. "Cell signals have to be tightly controlled," said Dr. Richard G.W. Anderson, chairman of cell biology and senior author of the study. "If the signaling machines do not work, which can happen when the cell doesn’t have enough cholesterol, the cell gets the wrong information, and disease results."

The cell membrane, which is fluid in nature, contains cholesterol. Dr. Anderson’s research focuses on regions of the membrane where cholesterol is enriched. These regions, called lipid domains, are more rigid than the rest of the cell membrane because of cholesterol and play a critical role in organizing signaling machinery at the cell surface. The correct arrangement of signaling modules in these domains is vital for communication inside the cell and is dependent on proper levels of cholesterol.

While studying how cholesterol moves to the membrane to get to lipid domains, Dr. Anderson, who holds the Cecil H. Green Distinguished Chair in Cellular and Molecular Biology, and colleagues found that cholesterol can work outside the membrane to regulate a key signaling pathway that occurs inside the cell. Through an interaction with a protein called the oxysterol binding protein (OSBP), cholesterol holds together a group of enzymes that deactivates extracellular signal-related kinase (ERK). Overactive ERK is associated with multiple cancers.

When the amount of cholesterol in lipid domains is normal, the OSBP-cholesterol complex keeps the amount of active ERK under control. When cholesterol in the domains gets too low, however, the complex falls apart, leading to abnormally high levels of active ERK.

Dr. Anderson and colleagues noticed that OSBP has binding sites for both cholesterol and the other proteins in the complex. They believe that when cholesterol binds OSBP it changes shape to bind the key enzymes in a way that allows them to work together to control deactivation of ERK. When lipid domain cholesterol gets low, OSBP loses its cholesterol and no longer is able to bind the enzymes that deactivate ERK, keeping it active.

"OSBP appears to work like a cholesterol-regulated scaffolding protein that controls a key signaling pathway," Dr. Anderson said "This work shows a new way that lipids can regulate key signaling pathways and raises the possibility that other lipid regulated signaling scaffolds can malfunction in other diseases."

Other UT Southwestern contributors to the study were Dr. Jian Weng, assistant professor of cell biology, and Dr. Ping-Yuan Wang, postdoctoral researcher in cell biology and lead author.

Megha Satyanarayana | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

Advanced analysis of brain structure shape may track progression to Alzheimer's disease

26.10.2016 | Health and Medicine

More VideoLinks >>>