Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic develops first genomic-based test to predict stroke from ruptured brain aneurysm

04.03.2005


Mayo Clinic researchers have discovered a genetic marker that may pave the way for a fast, inexpensive blood test to predict one type of deadly stroke that strikes 30,000 people in the United States annually.



The article and an editorial appear in the March edition of the Journal of Neurosurgery, http://www.thejns-net.org/jns/issues/toc_pre.html. The Mayo Clinic researchers report that people with key variations in a gene that affects the ability of blood vessels to relax are 10 times more likely to suffer a stroke from a ruptured brain aneurysm than people who have aneurysms but lack these key genetic variations.

"There are an incredible number of people walking around with brain aneurysms, but only a small percentage of these aneurysms will rupture," says G. Vini Khurana, M.D., Ph.D., the Mayo Clinic neurosurgical researcher who led the study. "There has been a search for a marker that would identify patients with rupture-prone aneurysms for a very long time because this disease can strike like lightning. Rupture typically happens suddenly and completely unexpectedly -- and when it does at least half of patients die or suffer long-term disability. That’s why our results suggesting that we may have found such a marker are so exciting: there is an urgent public health need for it."


Significance of the Mayo Clinic Research

The Mayo Clinic researchers conclude that they have found the first genetic marker to help doctors identify which cases of a condition known as sporadic brain aneurysm are at highest risk for death and disability due to rupturing and subsequent bleeding into the brain. Sporadic brain aneurysm is a different medical condition from familial aneurysm, for which genetic markers are already known. However, approximately 90 percent of all cases of aneurysm -- a dangerous thinning of blood vessel walls in the brain -- fall into the "sporadic" category. While development of sporadic brain aneurysm is relatively common (as autopsies have shown) many people have them and have no symptoms or warning signs that they could be at risk of catastrophic rupture that is imminently life endangering.

The Key Finding

The Mayo researchers are the first to identify specific genetic variations or "polymorphisms" associated with an approximately 10-fold increased risk of a ruptured aneurysm. If further studies validate these findings, screening for these polymorphisms could be done with a fast, inexpensive blood test to predict which patients with aneurysms are at risk. The experimental blood test researchers developed detects specific variations in the gene that encodes an important blood vessel-relaxation protein.

Dr. Khurana notes that the Mayo Clinic group’s effort is just the beginning of their research. Their hope is that a large, multicenter and international clinical trial will test their results. "But our initial results are really very powerful," he adds. "Our findings have very strong implications for brain aneurysm research. I think from a public health point of view, if you consider the millions and millions of dollars that go to sorting out this lightning-like, catastrophic disease, every year in the United States alone there are potentially 30,000 people who could be affected by this."

Background Biology

Physicians and researchers have long been puzzled by the discrepancy between the large numbers of people with brain aneurysms -- 10 to 15 million people in the U.S. -- and the incidence of aneurysms rupturing in a relatively small fraction of those people. Doctors knew some aneurysms were more prone to rupture, but didn’t know why. They suspected genes played a role, but lacked convincing studies supporting this hypothesis.

The Mayo Clinic research team had previously done extensive work with a molecule (nitric oxide synthase) known to play a pivotal role in the endothelium. The endothelium is the lining of the blood vessels that is very important to maintaining smooth blood flow. Disrupted blood flow in brain arteries is associated with increased risk of stroke. The Mayo team’s previous work showed that when the amount of this molecule is increased using a gene therapy approach, the arteries relax and maintain smooth, healthy flow.

The Investigation

To determine the role of nitric oxide synthase gene variations in ruptured brain aneurysms, the Mayo Clinic team screened the genetic variants of 49 patients who had unruptured brain aneurysms, and compared them with the genetic variants of 58 emergency room patients with ruptured aneurysms.

Blood samples were taken from all, and DNA analysis performed. There was no significant difference between the two groups in terms of age, race, gender, health history, family history, and smoking habits. Despite these similarities, the genetic differences were striking. Says Dr. Khurana: "Our findings are the first to present strong evidence that the reason for sporadic brain aneurysm rupture may be genetic."

Collaborators and Support

In addition to Dr. Khurana, other Mayo Clinic collaborators include: Irene Meissner, M.D.; Youvraj Sohni, Ph.D.; William Bamlet; Robyn McClelland, Ph.D.; Julie Cunningham, Ph.D.; and Fredric Meyer, M.D. Their work was supported by the Departments of Neurologic Surgery and Neurology, Mayo Clinic and Mayo Foundation.

Bob Nellis | EurekAlert!
Further information:
http://www.mayoclinic.com

More articles from Life Sciences:

nachricht Bacterial Nanosized Speargun Works Like a Power Drill
26.09.2017 | Universität Basel

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>