Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic develops first genomic-based test to predict stroke from ruptured brain aneurysm

04.03.2005


Mayo Clinic researchers have discovered a genetic marker that may pave the way for a fast, inexpensive blood test to predict one type of deadly stroke that strikes 30,000 people in the United States annually.



The article and an editorial appear in the March edition of the Journal of Neurosurgery, http://www.thejns-net.org/jns/issues/toc_pre.html. The Mayo Clinic researchers report that people with key variations in a gene that affects the ability of blood vessels to relax are 10 times more likely to suffer a stroke from a ruptured brain aneurysm than people who have aneurysms but lack these key genetic variations.

"There are an incredible number of people walking around with brain aneurysms, but only a small percentage of these aneurysms will rupture," says G. Vini Khurana, M.D., Ph.D., the Mayo Clinic neurosurgical researcher who led the study. "There has been a search for a marker that would identify patients with rupture-prone aneurysms for a very long time because this disease can strike like lightning. Rupture typically happens suddenly and completely unexpectedly -- and when it does at least half of patients die or suffer long-term disability. That’s why our results suggesting that we may have found such a marker are so exciting: there is an urgent public health need for it."


Significance of the Mayo Clinic Research

The Mayo Clinic researchers conclude that they have found the first genetic marker to help doctors identify which cases of a condition known as sporadic brain aneurysm are at highest risk for death and disability due to rupturing and subsequent bleeding into the brain. Sporadic brain aneurysm is a different medical condition from familial aneurysm, for which genetic markers are already known. However, approximately 90 percent of all cases of aneurysm -- a dangerous thinning of blood vessel walls in the brain -- fall into the "sporadic" category. While development of sporadic brain aneurysm is relatively common (as autopsies have shown) many people have them and have no symptoms or warning signs that they could be at risk of catastrophic rupture that is imminently life endangering.

The Key Finding

The Mayo researchers are the first to identify specific genetic variations or "polymorphisms" associated with an approximately 10-fold increased risk of a ruptured aneurysm. If further studies validate these findings, screening for these polymorphisms could be done with a fast, inexpensive blood test to predict which patients with aneurysms are at risk. The experimental blood test researchers developed detects specific variations in the gene that encodes an important blood vessel-relaxation protein.

Dr. Khurana notes that the Mayo Clinic group’s effort is just the beginning of their research. Their hope is that a large, multicenter and international clinical trial will test their results. "But our initial results are really very powerful," he adds. "Our findings have very strong implications for brain aneurysm research. I think from a public health point of view, if you consider the millions and millions of dollars that go to sorting out this lightning-like, catastrophic disease, every year in the United States alone there are potentially 30,000 people who could be affected by this."

Background Biology

Physicians and researchers have long been puzzled by the discrepancy between the large numbers of people with brain aneurysms -- 10 to 15 million people in the U.S. -- and the incidence of aneurysms rupturing in a relatively small fraction of those people. Doctors knew some aneurysms were more prone to rupture, but didn’t know why. They suspected genes played a role, but lacked convincing studies supporting this hypothesis.

The Mayo Clinic research team had previously done extensive work with a molecule (nitric oxide synthase) known to play a pivotal role in the endothelium. The endothelium is the lining of the blood vessels that is very important to maintaining smooth blood flow. Disrupted blood flow in brain arteries is associated with increased risk of stroke. The Mayo team’s previous work showed that when the amount of this molecule is increased using a gene therapy approach, the arteries relax and maintain smooth, healthy flow.

The Investigation

To determine the role of nitric oxide synthase gene variations in ruptured brain aneurysms, the Mayo Clinic team screened the genetic variants of 49 patients who had unruptured brain aneurysms, and compared them with the genetic variants of 58 emergency room patients with ruptured aneurysms.

Blood samples were taken from all, and DNA analysis performed. There was no significant difference between the two groups in terms of age, race, gender, health history, family history, and smoking habits. Despite these similarities, the genetic differences were striking. Says Dr. Khurana: "Our findings are the first to present strong evidence that the reason for sporadic brain aneurysm rupture may be genetic."

Collaborators and Support

In addition to Dr. Khurana, other Mayo Clinic collaborators include: Irene Meissner, M.D.; Youvraj Sohni, Ph.D.; William Bamlet; Robyn McClelland, Ph.D.; Julie Cunningham, Ph.D.; and Fredric Meyer, M.D. Their work was supported by the Departments of Neurologic Surgery and Neurology, Mayo Clinic and Mayo Foundation.

Bob Nellis | EurekAlert!
Further information:
http://www.mayoclinic.com

More articles from Life Sciences:

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>