Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research may provide ways to inhibit cancer’s ability to resist treatments

04.03.2005


Discovery gives clinicians new targets for making existing therapies more effective and developing drugs to inhibit the growth of cancers



A team of researchers at the University of Alberta in Edmonton and the Samuel Lunenfeld Research Institute in Toronto have discovered how a key enzyme involved in repairing DNA is put together and how it works--a development that opens up new therapies for making cancer cells more vulnerable to attack. The team has crystallized--or characterized in three dimensions--polynucleotide kinase (PNK), a key enzyme involved in a cell’s ability to repair single-strand and double-strand breaks in DNA.

"This gives us a clearer picture of how the enzyme works and opens up the possibility that we can develop drugs that inhibit cancer’s ability to repair itself and resist treatments," says Biochemistry professor Mark Glover, the lead author in the paper published in today’s issue of Molecular Cell.


Normally, explains Department of Oncology and Alberta Cancer Board researcher Michael Weinfeld, when a single- or double-strand break occurs, "the damaged ends need to be cleaned up before they can be rejoined" as an early step in the repair process. PNK is one of the key enzymes required to "polish" the strand break ends. Without it, cells are more sensitive to agents such as ionizing radiation or certain drugs that kill cells by damaging their DNA.

DNA, or deoxyribonucleic acid, is a large molecule shaped like a double helix found primarily in the chromosomes of the cell nucleus and contains the genetic information of the cell. Once damaged, cells have developed biochemical responses to repair the damage; when they can’t be repaired, cells die if the damage is too toxic. Or, if the damage is not lethal, mutations can occur that lead to cancer.

The paper is entitled The Molecular Architecture of the Mammalian DNA Repair Enzyme, Polynucleotide Kinase. The work builds on Dr. Weinfeld’s work on understanding DNA damage, Dr. Glover’s work on the basic biochemical processes involved in understanding breast cancer and Dr. Bernstein’s postdoctoral work.

The research was funded by the Canadian Institutes of Health Research, the National Cancer Institute of Canada and the Alberta Heritage Foundation for Medical Research. Dr. Glover is also a Canada Research Chair.

The authors on the paper include: Drs. Glover and Weinfeld, Nina Bernstein, R. Scott Williams, Melissa Rakovszky, Diana Cui, Ruth Green, Feridoun Karimi-Busheri, Rajam Mani, Sarah Galicia, C. Anne Koch, Carol Cass and Daniel Durocher (Dr. Durocher has an appointment with the Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto.)

Michael Robb | EurekAlert!
Further information:
http://www.ualberta.ca

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>