Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular thermometers on skin cells detect heat and camphor

04.03.2005


The human brain is like a general in a bunker. Floating in its bubble of cerebrospinal fluid, it has no direct window to the outside world, so the only way for the brain to observe, comprehend, and order the body into action is to rely on information it receives. This information comes to it through a sophisticated system of sensory neurons that connect the brain to organs like the eye, ear, nose, and mouth.

In recent years, biologists and neuroscientists have been trying to discover the basic molecules and mechanisms that underlie this complicated communication system that is our senses, and one group of researchers from The Scripps Research Institute and the Genomics Institute of the Novartis Research Foundation (GNF), has been making headway in trying to understand those that mediate our sense of touch.

Touch is perhaps the most fundamental of our five senses because it works through our largest organ, the skin. Through the skin we can detect temperature, texture, and understand both pleasure and pain. A few years ago, the Scripps Research and GNF team, which was led by Scripps Research Assistant Professor Ardem Patapoutian, was the first to clone a protein (TRPV3) that the researchers believed was involved in our ability to sense and detect warm temperature. But while temperature-gated action of TRPV3 suggested the protein might be communicating temperature to the brain, its distribution raised some doubts. Despite expectations that temperature sensors be present in sensory neurons innervating the skin, TRPV3 protein was found in actual skin cells (keratinocytes) and not in the neurons.



Now, in the latest issue of the journal Science, the team is reporting definitive evidence that TRPV3 is indeed a temperature sensor. They have demonstrated that mice lacking the TRPV3 protein have specific deficiencies in their ability to detect temperatures. "Are the TRPV3 proteins involved in heat sensation in the living mammal?" says Patapoutian. "The answer seems to be ’yes.’"

This is significant because it suggests that TRPV3 is a potential drug target. TRPV3 is one of many receptors that participate in signaling pain--an indication for which there is a great need for new therapeutics. Indeed, several compounds that are currently under investigation for alleviating chronic pain target the action of a protein called TRPV1 (VR1), which is similar to TRPV3.

Molecular Thermometers

TRPV3 and TRPV1 are both proteins that belong to a class of molecules known as "transient receptor potential" channels. There are at least six of these TRP channel proteins in humans and other mammals, and there has been growing evidence in the last few years that these proteins are "molecular thermometers" that detect hot and cold temperatures through the skin and communicate the sensation of temperature to the brain.

The most obvious evidence is that TRP channels are activated by thermal heat within a particular temperature range--from the extremely cold to the extremely hot. TRPV3, for instance, becomes activated at warm and hot temperatures of 33° C (91.5° F) and above. Similarly, other TRP channels are specifically activated within hot, warm, cool, or cold temperature ranges.

Most of these temperature-gated channels are also located where scientists would expect the molecules that communicate temperature to the brain to be located--in the sensory neurons that connect the skin to the spinal column and the brain. These proteins become activated when they receive the correct stimuli (such as a certain temperature), and this causes them to open and allow electrically charged ions to pass through and cause an electrical potential that signals the brain.

Patapoutian and his colleagues discovered TRPV3 a few years ago by conducting a computer search through an early-assembled draft of the human genome. Its sequence similarity to other temperature-gated proteins led them to identify and clone TRPV3 as a possible molecular thermometer--perhaps the first one that makes skin cells able to sense warm temperatures.

Now they have demonstrated that the receptor does indeed detect heat by examining the physiological and behavioral characteristics of a knockout mouse with no TRPV3 proteins. The mice appear completely normal behaviorally except that they have severe deficiencies in their ability to detect warm and hot temperatures. Patapoutian and his colleagues also showed that, in cultured keratinocyte cells, TRPV3 is activated by the compound camphor, which is one of the main ingredients in many warming rubs. TRPV3 is the first known receptor for camphor.

Significantly, when Patapoutian and his colleagues discovered TRPV3 a few years ago, they were intrigued to discover that it is unique among thermoTRP channels in that it is expressed on the surface of skin cells known as keratinocytes. At the time, they hypothesized that its presence on keratinocytes might mean that the detection of temperature takes place in the skin as well as on these neurons.

In their Science paper, they demonstrate that this is indeed the case by showing that camphor activates TRPV3 on keratinocytes but not on sensory neurons. In the knockout models, this heat- and camphor-mediated activity disappears, which suggests that it is the TRPV3 proteins on the keratinocytes that are actually detecting warm temperatures. It is not known how this signal is communicated to the brain, since keratinocytes, unlike neurons, have no direct link with the central nervous system. Keratinocytes do, however, touch nerve fibers, and it may be through these contacts that the signals are communicated. Investigations into this possibility are ongoing.

Jason Bardi | EurekAlert!
Further information:
http://www.scripps.edu
http://dx.doi.org/10.1126/science.1108609

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>