Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists link gene to dyslexia

04.03.2005


Discovery offers hope for treatment of dyslexia



A gene which is likely to be one of the causes of dyslexia in children has been discovered by researchers at Cardiff University.
They believe the major finding will give researchers a better understanding of what causes the brain disorder which disrupts reading and writing skills.

It is now hoped that follow-up research will also lead to the discovery of treatments which could help children susceptible to dyslexia. The discovery was made by a team from the Department of Psychological Medicine, Wales College of Medicine. They carried out analysis of 300 families from Wales and the West of England where at least one child suffered from the disorder.



The research team led by Professor Julie Williams and Professor Michael O’Donovan will now continue their study in order to discover more about the gene called "KIAA0319". The research will focus on discovering exactly how the gene works within the brain to disrupt reading and writing skills.

Professor Williams said: "This is a major breakthrough and the first study to identify one gene which contributes to susceptibility to the common form of dyslexia. We would like to thank all the parents and children who took part in the study and would extend a call to new volunteers to take part in this important research."

The researchers want to hear from more families with at least one child who has dyslexia.

Professor O’Donovan said: "The finding vindicates our optimism that a disorder as apparently complicated as impaired reading ability can be amenable to molecular genetic dissection." However, he added: "Much more remains to be done before the finding is translated into therapy. To tackle the genetic origins of disorders like dyslexia, both quality of assessment and sample size are crucial. We have the tools to take care of the latter, but we are entirely dependent on the altruism of the public in offering their time and DNA".

Prof. Julie Williams | EurekAlert!
Further information:
http://www.cf.ac.uk

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>