Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Funding to Combat Leading Genetic Killer of Infants and Toddlers


Researchers at Columbia University have received more than $3 million in funding from the Spinal Muscular Atrophy Foundation to conduct research on spinal muscular atrophy (SMA), a neuromuscular disease that is the leading genetic killer of infants and toddlers. The funding will enable the institution to significantly expand its already substantial SMA research.

With an estimated 55,000 people afflicted with the disease in the United States, Europe and Japan, spinal muscular atrophy, once among the least understood diseases in medicine, has recently emerged as one of the genetic conditions closest to a treatment. The National Institute of Neurological Disorders and Stroke (NINDS) has selected SMA to serve as the prototype for a translational research project that is expected to yield drug candidates for investigational new drug application filings by 2007. The SMA Foundation has been instrumental in raising awareness and supporting ground breaking SMA projects in biotechnology, government and academia which will advance translational research overall, including the efforts underway at NIH.

The SMA Foundation’s donation to Columbia University research is part of a broader strategy to integrate basic, translational and clinical research efforts at leading institutions into coordinated efforts aimed at facilitating drug discovery.

Loren Eng, Co-Founder and President of the SMA Foundation, said, “Columbia University was an obvious place to launch this effort given the institution’s leadership position in neuroscience and neurology. In the past four years Columbia neuroscientists have won two Nobel prizes. There is also a strong commitment to neuroscience from Columbia’s administration and research community. One third of all Columbia researchers study the brain and nervous system and they generate more research funding than any other group of neuroscientists in the country. Given the strengths of the institution and its people, it was evident that Columbia was the place for us to develop an SMA research nucleus.”

Most recently, Columbia University president Lee Bollinger and Columbia University Medical Center (CUMC) executive vice president and dean Gerald Fischbach, M.D. announced the creation of a Neuroscience Institute which will bring together researchers and clinicians to expedite discoveries from the laboratory to the bedside. “This a remarkable time in the field of neuroscience and SMA research,” said Dr. Fischbach. “Given all that is already known about SMA scientifically, the expanded research that this funding supports will greatly advance the probability of a treatment in the near term. The funding provided by the Foundation will enable us to provide critical support to rapidly advance our research and clinical care to patients with SMA. ”

Key Columbia faculty members who have been funded by the SMA Foundation or are involved in SMA research include:

Umrao Monani, Ph.D., Assistant Professor of Neurology in the Center of Neurobiology and Behavior at CUMC is responsible for identifying drug targets. He was instrumental in the development of a key mouse model of SMA, which is essential to genetic studies of the disease. His research addresses the question of why a decreased amount of Survival Motor Neuron (SMN) protein leads to SMA and provides an opportunity to test the drugs that Dr. Stockwell identifies.

Brent Stockwell, Ph.D., Assistant Professor in the Department of Biological Sciences and the Department of Chemistry at Columbia University leads drug discovery efforts. He focuses on chemical genetics, drug discovery and is screening tens of thousands of existing compounds to identify drugs that will stimulate the creation of SMN protein, which is deficient in SMA patients.

Christopher E. Henderson, Ph.D., a neurobiologist specializing in central nervous system development and neuronal degeneration will be joining the institution. Dr. Henderson will establish a Center for Motor Neuron Biology and Disease at CUMC focused on high-level translational motor neuron research. Working collaboratively with each laboratory and contributing to the translational research process, the new center will facilitate transfer of screening techniques, active chemical molecules and knowledge of disease causing pathways.

Darryl De Vivo, M.D., the Sidney Carter Professor of Neurology at CUMC and the director of the SMA Clinic, will direct the next step toward bringing new therapies to SMA patients through clinical trials. Dr. De Vivo is leading a multi-center network of investigators – the Pediatric Neuromuscular Clinical Research Network – that includes CUMC, Harvard University and the University of Pennsylvania researchers, as well as data management from the University of Rochester. Beginning in 2005, Dr. De Vivo and the network will conduct clinical trials in SMA patients with drugs that are currently under study as well as any compounds newly discovered by Dr. Stockwell, Dr. Monani and others. It is hoped that one more of these drugs candidates will significantly reduce the devastating effects of SMA in patients.

James L. Manley, Ph.D., a molecular biologist and Julian Clarence Levi Professor of Life Sciences in the Department of Biological Sciences at Columbia University is studying, together with his colleague Tsuyoshi Kashima, M.D., the basic biology of the SMN gene to find ways in which to recover its activity in patients. He is interested in how information in the chromosome is converted into messenger RNA to produce the SMN protein and is trying to understand the defect in that process that results in SMA disease.

Thomas Jessell, Ph.D., Investigator at the Howard Hughes Medical Institute and Director of the Neuroscience Institute at Columbia University, is focused on defining the molecular mechanisms that control motor neuron differentiation and the formation of sensory-motor circuitry in the developing spinal cord. Recent studies together with Hynek Wichterle, Ph.D., now in the Department of Pathology at Columbia University Medical Center, have been able to convert embryonic stem cells into functional motor neurons, opening up new strategies for cell based chemical screens for drugs that can prevent the degeneration of motor neurons associated with SMA.

Committed to supporting research with the highest probability of advancing potential drug candidates, the SMA Foundation has forged collaborations with leading medical institutions and industry in the United States and internationally. Since its inception, the Foundation has funded more than $15 million in research initiatives, formed a number of partnerships with biotechnology companies, reduced barriers in the drug development process by providing open access to mouse models of SMA and has been instrumental in working with both Congress and the National Institutes of Health in creating awareness and increasing federal funding for the disease.

About SMA Foundation

The SMA Foundation is a nonprofit organization founded in 2003 dedicated to finding a treatment or potential cure for spinal muscular atrophy (SMA). The Foundation provides funding for the full range of research from basic to clinical work conducted in academic laboratories as well as corporate therapeutics development. In addition, the Foundation is committed to raising awareness through education and increasing federal funding and support for the disease. For more information on the Spinal Muscular Atrophy Foundation, visit or call (646) 253-7100.

About Columbia University

Columbia University in the City of New York, founded in 1754 as King’s College by royal charter of King George II of England, is the oldest institution of higher learning in the state of New York and the fifth oldest in the United States.

Columbia University Medical Center provides international leadership in basic, pre-clinical and clinical research, medical education, and health care. The medical center trains future leaders in health care and includes the dedicated work of many physicians, scientists, nurses, dentists, and other health professionals at the College of Physicians & Surgeons, the School of Dental & Oral Surgery, the School of Nursing, the Mailman School of Public Health, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. With a strong history of some of the most important advances and discoveries in health care, its researchers are leading the development of novel therapies and advances to address a wide range of health conditions.

| newswise
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>