Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular messengers perform a crucial role in the ability of injured nerve cells to heal themselves

03.03.2005


Weizmann Institute findings might advance search for new therapies for injured nerve fibers



Long distance messengers star in many heroic tales, perhaps the most famous being the one about the runner who carried the news about the victory of the Greeks over the Persians in the fateful battle of Marathon. A team of researchers at the Weizmann Institute of Science has now discovered how molecular messengers perform a crucial role in the ability of injured nerve cells to heal themselves.

A nerve cell has a cell body and a long extension, called an axon, which in humans can reach up to one meter in length. Nerve cells belonging to the peripheral nervous system can regrow when their axons are damaged. But how does the damaged axon inform the cell body that it must start producing vital proteins for the healing? That’s precisely where the molecular messengers, proteins called Erk-1 and Erk-2, enter the picture. When the axon is injured, these proteins bind to molecules of phosphorus. In this phosphorylated state, they can communicate to command centers in the cell, transmitting a message that activates certain genes in the cell body, which then manufactures proteins that are vital for the healing of the injured axon. The problem is that the messengers must transmit their phosphorus message over a great distance along the axon, and in the course of this arduous journey can easily lose their phosphorus en route.


Dr. Michael Fainzilber and graduate students Eran Perlson and Shlomit Hanz of the Weizmann Institute’s Biological Chemistry Department found that the Erk messengers, together with their phosphorus message, bind to a special molecule called vimentin, which protects them from dismantling or loss of the phosphorus. Vimentin links up to motor proteins that carry the message along the axon, and thanks to this linkage and protection, the messengers can safely transmit their message, thus bringing the injured axon’s call for help to the cell body. The study will be published in the March 3’rd issue of Neuron. The scientists hope that these findings might advance the future search for new therapies for injured nerve fibers.

Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il

More articles from Life Sciences:

nachricht Bacterial control mechanism for adjusting to changing conditions: How do bacteria adapt?
13.12.2017 | Technische Universität München

nachricht Cellular Self-Digestion Process Triggers Autoimmune Disease
13.12.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>