Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Secrets of the cilia: Kidney disease and blindness share common genetic defect

03.03.2005


Scientists at the University of Michigan Medical School have discovered a gene called NPHP5 and found mutations in this gene that cause a rare genetic disease called Senior-Loken syndrome. Children with this syndrome develop a type of cystic kidney disease called nephronophthisis*, as well as a form of blindness called retinitis pigmentosa.



In both the eye and the kidney, U-M scientists found that mutations in NPHP5 produced defects in hair-like cellular structures called cilia, which serve as sensory devices throughout the body. Researchers are interested in cilia, because they may play an important role in diseases ranging from diabetes to Alzheimer’s.

News of the discovery is published in the March 2005 issue of Nature Genetics. Edgar A. Otto, Ph.D., a U-M research investigator, is first author of the paper. "It seems that defective ciliary proteins can lead to disease in virtually all organ systems," says Friedhelm Hildebrandt, M.D., the U-M’s Frederick G.L. Huetwell Professor for the Cure and Prevention of Birth Defects, who directed the research. "Just as defective cilia in kidney tubules underlie kidney disease, defective cilia in the light-sensitive portion of the eye cause retinitis pigmentosa."


For the past 15 years, Hildebrandt and his collaborators have been studying nephronophthisis* (NPHP), a disease that leads to kidney failure in infants, children and young adults. Although rare, NPHP is the most common genetic cause of kidney failure in the first two decades of life. Other than dialysis or a kidney transplant, there is no treatment and no cure for NPHP.

In earlier research, Hildebrandt and coworkers discovered three genes, NPHP1, NPHP2, and NPHP3, mutated forms of which are responsible for three types of nephronophthisis. In 2002, they discovered a fourth gene, NPHP4, simultaneously with another research team in France.

The most recently discovered gene, NPHP5, accounts for a small percentage of nephronophthisis cases, but it plays a central role in retinitis pigmentosa, a type of blindness that sometimes goes hand-in-hand with NPHP. While only about 10 percent of patients with mutated forms of any of the four previously discovered NPHP genes have the related eye disease, all NPHP patients who have mutations in NPHP5 develop retinitis pigmentosa by age three.

What’s especially interesting, according to Hildebrandt, is that similar molecular mechanisms appear to cause both blindness and kidney failure. U-M researchers knew from their previous work that the proteins produced by NPHP genes are expressed in the kidneys’ primary cilia – hair-like projections extending from the surface of cells lining the kidney tubules. "When bent by the flow of urine, primary cilia send signals that influence key cellular functions," Hildebrandt says. "Mutations in NPHP genes prevent cilia from functioning properly, causing damage that leads to kidney disease."

These important sensors aren’t confined to the kidneys, however. "Sensory cilia are universal devices which can sense very divergent stimuli – such as motion in the kidney, photons in the photoreceptors in the eye, hormones, or scent in the olfactory epithelium," Hildebrandt says. "Whenever Nature needs a device to sense a signal from outside the cell, it seems to be using a cilium.

"Dr. Otto found that the gene product of the NPHP5 gene, which we call nephrocystin-5, directly interacts with calmodulin, which is known to be an important signaling protein in photoreceptors," Hildebrandt adds. "Our collaborators at U-M’s Kellogg Eye Center found that nephrocystin-5 is part of a protein complex together with another protein called RGPR. If mutated, the gene for RGPR is a frequent cause of retinitis pigmentosa.

"What was also very striking was that nephrocystin-5, together with calmodulin and RGPR, is expressed in the cilia of kidney epithelial cells, and also in the connecting cilia of photoreceptors," Hildebrandt explains. "In other words, defects in cilia tie together the disease phenotypes of the kidney and the eyes."

Work by other researchers suggests additional connections. "In a disease called Bardet-Biedl Syndrome, patients have a combination of nephronophthisis with retinitis pigmentosa, but also diabetes mellitus, obesity, infertility and mental retardation," says Hildebrandt. "Scientists studying this disease have shown that the genes involved are all expressed in cilia."

There is even evidence that defective ciliated neurons may be involved in Alzheimer’s disease, according to Hildebrandt. "Cilia have a scaffold of tubulin, where motor proteins move up and down, carrying cargo. It seems that the proteins involved in nephronophthisis are cargo. Similarly, some of the proteins involved in Alzheimer’s also appear to be cargo on cilia."

Sally Pobojewski | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>