Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein analysis of amniotic fluid reveals clues about preterm birth

02.03.2005


Identifying protein biomarkers predicts success for cervical stitching



Doctors treating pregnant women with threatened preterm birth sometimes sew the cervix closed, a procedure known as cerclage. Despite this traditional intervention, many women still lose the pregnancy. While the causes of preterm labor are not well understood, researchers at the University of Maryland School of Medicine and Yale University report that they can now predict who will benefit from cerclage by rapidly identifying the presence of several distinct proteins in amniotic fluid. Study results will be published in the March 1 issue of the American Journal of Obstetrics and Gynecology.

"We looked at a group of women with pregnancies between 18 to 22 weeks. These women had a condition called incompetent cervix, where their cervix dilates in the absence of labor," says Carl P. Weiner, M.D., professor of obstetrics, gynecology and reproductive sciences at the University of Maryland School of Medicine.


The researchers tested the amniotic fluid for four distinct proteins they previously had linked to inflammation, a known cause of preterm labor. "Women with these four protein biomarkers went on to deliver early even though their cervix was sewn shut. And, for the first time, our research identified another protein biomarker in the amniotic fluid, this one linked to decidual hemorrhage or bleeding into the lining of the uterus," explains Dr. Weiner who is a maternal/fetal medicine specialist at the Center for Advanced Fetal Care at the University of Maryland Medical Center. "Women with the biomarker for decidual hemorrhage also went on to deliver early, despite efforts to stop preterm labor."

Researchers believe these protein biomarkers will not only allow doctors to predict whose preterm labor can be stopped, but that the identification of these proteins opens a window of understanding into the causes of preterm labor. With that knowledge, they hope to develop more effective treatments for preterm birth.

Dr. Weiner says, "Right now, drug therapies, compared to placebo, can at best delay delivery by 48 to 72 hours. And, as we’ve shown, cerclage, or sewing the cervix closed, won’t help women with the biomarkers for either inflammation or decidual hemorrhage. This research takes us a giant step forward into mapping out the mechanisms of preterm birth and perhaps finding new ways to attack the problem."

Dr. Weiner notes that for the women whose amniotic fluid did not contain the protein biomarkers, cerclage helped them carry their pregnancies further to term or near term. However, about 50 percent of them still went on to deliver prematurely. "This shows that there are other causes, besides inflammation and decidual hemorrhage, that lead to preterm birth, suggesting additional biomarkers will be found," explains Dr. Weiner.

Because preterm birth may result from a range of problems, researchers suspect that successful treatment will require combination therapy. "There probably isn’t a single, magic bullet that will prevent preterm birth. We need to expand our horizons. Right now, it appears a combination of treatments will prove the key to success," says Dr. Weiner.

Another important component of this protein analysis is that it can be performed quickly. Recent laboratory advances will allow doctors to get test results in about one hour. Dr. Weiner and his colleagues worked with proteomic chip technology from Ciphergen Inc. to develop this new method of protein analysis called MR scoring.

In the United States, about 11 percent of women deliver preterm, and about three percent deliver before 32 weeks, resulting in high infant mortality rates. Normal gestation for pregnancy is about 40 weeks.

Dr. Weiner’s co-investigators for the study were Keun-Young Lee, M.D., Department of Obstetrics and Gynecology, Kangnam Sacred Heart Hospital, Hallym University, Seoul, Korea; Catalin S. Buhimschi, M.D., and Irina A. Buhimschi, M.D., Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, CT; and Rob Christner, Ph.D., Ciphergen Biosystems, Fremont, CA.

Sharon Boston | EurekAlert!
Further information:
http://www.umm.edu

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>