Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein analysis of amniotic fluid reveals clues about preterm birth

02.03.2005


Identifying protein biomarkers predicts success for cervical stitching



Doctors treating pregnant women with threatened preterm birth sometimes sew the cervix closed, a procedure known as cerclage. Despite this traditional intervention, many women still lose the pregnancy. While the causes of preterm labor are not well understood, researchers at the University of Maryland School of Medicine and Yale University report that they can now predict who will benefit from cerclage by rapidly identifying the presence of several distinct proteins in amniotic fluid. Study results will be published in the March 1 issue of the American Journal of Obstetrics and Gynecology.

"We looked at a group of women with pregnancies between 18 to 22 weeks. These women had a condition called incompetent cervix, where their cervix dilates in the absence of labor," says Carl P. Weiner, M.D., professor of obstetrics, gynecology and reproductive sciences at the University of Maryland School of Medicine.


The researchers tested the amniotic fluid for four distinct proteins they previously had linked to inflammation, a known cause of preterm labor. "Women with these four protein biomarkers went on to deliver early even though their cervix was sewn shut. And, for the first time, our research identified another protein biomarker in the amniotic fluid, this one linked to decidual hemorrhage or bleeding into the lining of the uterus," explains Dr. Weiner who is a maternal/fetal medicine specialist at the Center for Advanced Fetal Care at the University of Maryland Medical Center. "Women with the biomarker for decidual hemorrhage also went on to deliver early, despite efforts to stop preterm labor."

Researchers believe these protein biomarkers will not only allow doctors to predict whose preterm labor can be stopped, but that the identification of these proteins opens a window of understanding into the causes of preterm labor. With that knowledge, they hope to develop more effective treatments for preterm birth.

Dr. Weiner says, "Right now, drug therapies, compared to placebo, can at best delay delivery by 48 to 72 hours. And, as we’ve shown, cerclage, or sewing the cervix closed, won’t help women with the biomarkers for either inflammation or decidual hemorrhage. This research takes us a giant step forward into mapping out the mechanisms of preterm birth and perhaps finding new ways to attack the problem."

Dr. Weiner notes that for the women whose amniotic fluid did not contain the protein biomarkers, cerclage helped them carry their pregnancies further to term or near term. However, about 50 percent of them still went on to deliver prematurely. "This shows that there are other causes, besides inflammation and decidual hemorrhage, that lead to preterm birth, suggesting additional biomarkers will be found," explains Dr. Weiner.

Because preterm birth may result from a range of problems, researchers suspect that successful treatment will require combination therapy. "There probably isn’t a single, magic bullet that will prevent preterm birth. We need to expand our horizons. Right now, it appears a combination of treatments will prove the key to success," says Dr. Weiner.

Another important component of this protein analysis is that it can be performed quickly. Recent laboratory advances will allow doctors to get test results in about one hour. Dr. Weiner and his colleagues worked with proteomic chip technology from Ciphergen Inc. to develop this new method of protein analysis called MR scoring.

In the United States, about 11 percent of women deliver preterm, and about three percent deliver before 32 weeks, resulting in high infant mortality rates. Normal gestation for pregnancy is about 40 weeks.

Dr. Weiner’s co-investigators for the study were Keun-Young Lee, M.D., Department of Obstetrics and Gynecology, Kangnam Sacred Heart Hospital, Hallym University, Seoul, Korea; Catalin S. Buhimschi, M.D., and Irina A. Buhimschi, M.D., Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, CT; and Rob Christner, Ph.D., Ciphergen Biosystems, Fremont, CA.

Sharon Boston | EurekAlert!
Further information:
http://www.umm.edu

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>