Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emory study finds monarch health tied to migration

02.03.2005


Monarch butterflies in eastern North America have one of the longest migrations of any species, with a survival-of-the-fittest trek that can take them thousands of miles from Canada to Central Mexico. A new Emory University study has found that these journeys may be the key to maintaining healthy monarch populations at a time when habitat loss and other environmental issues could curb the ability of the butterflies to make the trip.



Emory researchers discovered that monarch butterflies infected with a protozoan parasite flew slower, tired faster and had to expend more energy flying than healthy monarchs. These results, published in the March issue of Ecology Letters, may explain why parasite burdens are much lower in migratory monarch populations compared to year-round residents -- an effect that possibly occurs in other migratory species as well, explains Sonia Altizer, lead researcher of the study and an assistant professor of environmental studies at Emory.

"We know that several species of birds, insects and other animals undergo two-way migrations of several thousand miles or longer. These journeys can be thought of as animals essentially running a marathon every fall and spring. So if animals are infected with parasites, this would be like a distance runner trying to run a marathon with the flu. In this case, parasitized animals will drop out of the race, and across the whole population, prevalence of disease will decline," Altizer says.


However, monarch migration in eastern North America is threatened by several environment factors such as habitat loss at wintering sites, climate warming trends and an increase of tropical milkweed species in milder climates. These dynamics could ultimately cause large migratory populations to be replaced with smaller remnants that stay put and breed year-round, she says.

"The results of our study add one more reason to protect monarch migration east of the Rockies. If this migration collapses due to climate warming, habitat loss, pesticide use or other reasons, we probably won’t lose monarchs as a species, but we’d be left with remnant, nonmigratory populations that are heavily infected with parasites, which could have several negative effects, from higher mortality rates, smaller body sizes and deformities, to more virulent strains of the parasite," Altizer says.

Altizer’s experiments, conducted with graduate student Catherine Bradley, showed that parasitized monarch butterflies had 10-20 percent lower flight ability while on the "butterfly treadmill," and that the parasite affected their ability to fly long distances. Although the infected monarchs looked the same, weighed the same and had nearly identical survival rates to adulthood when they were not migrating, the flight trials in the laboratory essentially "unmasked" an effect of the parasite that normally would have been hidden. "The experiment demonstrates that seemingly small effects of parasites on their hosts can have a larger impact when combined with the stresses of migration," Altizer says.

Beverly Cox Clark | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>