Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DOE JGI launches IMG public online microbial genome data clearinghouse

02.03.2005


As the microbial world comes to light through DNA sequencing, the new Integrated Microbial Genomes (IMG) data management system of the U.S. Department of Energy (DOE) Joint Genome Institute (JGI) will deliver valuable information for the benefit of the global research community.



"The IMG system is an essential enhancement to the computational toolkit supported by DOE," said Dr. Aristides A. Patrinos, Associate Director for Environmental and Biological Research of the DOE Office of Science. "IMG responds to the urgent need of handling the vast and growing spectrum of datasets emerging from genome projects taken on by the DOE JGI and other public DNA sequencing centers. It is our hope that the IMG system will enable our scientists to tap the rich diversity of microbial environments and harness the possibilities that they hold for addressing challenges in environmental cleanup, medicine, agriculture, industrial processes, and alternative energy production."

The DOE JGI is currently producing nearly one-quarter of the number of microbial genome projects worldwide, more than any other single institution. The IMG system currently features over 200 organisms, with an additional 200 already in the queue for 2005. The release of IMG, accessible to the public at http://img.jgi.doe.gov/, is the result of a collaboration between the DOE JGI and Lawrence Berkeley National Laboratory’s Biological Data Management and Technology Center (BDMTC).


"As the number of microbial genomes sequenced continues to rise, the genome analysis process becomes the rate-limiting step," said DOE JGI Director Eddy Rubin. "By integrating publicly available microbial genome sequence with DOE JGI sequences, the IMG system offers a powerful data management platform that supports timely analysis of genomes from a comparative functional and evolutionary perspective."

"IMG’s primary goal is to provide high-quality data in a comprehensible system that is diverse in terms of the number of genomes it covers," said Victor Markowitz, head of BDMTC, who led the IMG development effort. "This goal follows the fundamental principle that the value of genome analysis depends on the quality of the data and increases with the number of genomes available for comparative analysis."

Nikos Kyrpides, of DOE JGI’s Microbial Genome Analysis Program (MGAP), provided scientific leadership and overall coordination for the IMG project. MGAP manages the IMG’s data content and curation and helped develop the system, with additional support provided by DOE JGI’s Microbial Ecology and Genome Data System groups. "The IMG system champions the principle of integration in an evolutionary context" said Kyrpides. "This is critical for enabling the generation of high-quality annotations, and comprehensive metabolic reconstructions.

"The first release of IMG offers a comprehensive genome data exploration system of the DOE JGI-sequenced genomes to our collaborators and the scientific community at large." According to Kyrpides, future releases of IMG will provide enhanced data analysis capabilities and mechanisms that will allow the scientific community to participate in the annotation effort.

"There are hundreds of bacterial genome sequences in multiple databases with hundreds of new genomes expected this year," said Gary Andersen, Molecular Microbial Ecology Group Leader of the Lawrence Berkeley National Laboratory Earth Sciences Division. "It has become an increasingly difficult task to track down all relevant sequences to compare with your favorite gene."

Andersen uses IMG for a project sponsored by the DOE Genomics: GTL program, which targets the use of DNA sequences as starting points for systematically tackling questions about the essential processes of living systems. Andersen is exploring the potential of a particular microbe, Caulobacter crescentus, for heavy-metal remediation in wastewater.

"I have found the IMG system very useful in identifying potential functions for hypothetical genes that we find upregulated in Caulobacter crescentus strains exposed to heavy metals. Examining the neighborhood around a gene of unknown function in multiple species selected from the organism browser may yield clues of what its role might be in your particular species," said Andersen. "The interface is quite intuitive, which is a benefit for someone like me that does not like to read manuals."

John Taylor, professor of plant and microbial biology at UC Berkeley, tried out the IMG system at a community workshop in February. "In evolutionary biology, comparative genomics has become the most powerful tool for understanding everything from the patterns of mutation to adaptation," said Taylor. "Computational biologists have led the way, but IMG makes it possible for evolutionary biologists without first-rate computer skills to compare fungal and bacterial genomes and scrutinize fundamental processes like speciation and adaptation."

In addition to curating the IMG system, DOE JGI will continue to deposit genome sequence information it generates into GenBank®, the repository maintained by the National Center for Biotechnology Information.

David Gilbert | EurekAlert!
Further information:
http://www.llnl.gov
http://img.jgi.doe.gov/

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>