Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New treatment for inflammatory bowel disease

02.03.2005


An anti-inflammatory therapy utilizing proteins called type 1 interferon IFN-alpha and IFN-beta (IFN-á/â) has been shown by researchers at the University of California, San Diego (UCSD) School of Medicine and their colleagues in Japan and Israel to offer relief in mouse models of Crohn’s disease and ulcerative colitis, the two major forms of the painful, chronic condition called inflammatory bowel disease (IBD) that affects nearly 1 million Americans.



Published in the March 2005 issue of the Journal of Clinical Investigation (JCI), the study provides the first description of the molecular mechanism by which IFN-á/â inhibits the severity of colitis and maintains intestinal homeostasis, or the "constant state" of the gut, by suppressing pro-inflammatory activity by the immune system macrophages. "Although IFN-á/â therapy has been tried in recent clinical trials, along with other anti-inflammatory treatments, researchers have not understood how or why IFN-á/â might work as an IBD treatment," said Eyal Raz, M.D., UCSD professor of medicine and the study’s senior author. "Our study describes how activated IFN-á/â plays a protective role in colonic inflammation."

The study’s first author, Kyoko Katakura, M.D, Department of Medicine II, Fukushima, Japan, added that the team’s results point to an important protective and potential therapeutic role for IFN-á/â. In an accompanying Commentary in the March issue of JCI, German researchers Stefan Wirtz and Markus F. Neurath noted that the results "suggest that strategies to modulate innate immunity may be of therapeutic value." They added that "It is astonishing to realize that in spite of the existence of clinical trials on the use of IFN-á/â in the treatment of UC (ulcerative colitis), there is only very limited information about their expression and biological function in the immune system of the gut."


The Raz team discovered the role of IFN-á/â through their continuing studies of an immune system molecule called Toll-like receptor 9 (TLR9). In previous research* the researchers had shown that TLR9 initiated an anti-inflammatory program to ease colitis in experimental animals. In the new study, the investigators again utilized mouse models to explore how TLR9 eases inflammation. This time, however, they found differing reactions in two strains of mice. Agents that activate TLR9 were given to the two different groups of mice that appear similar, but are from strains that make them genetically different. The TLR9 activators given to one of the groups, called RAG mice, inhibited the severity of experimental colitis, but had no effect on the other group of mice, called SCID mice.

To understand why the mice reacted differently, the researchers used a variety of scientific approaches to explore the cellular and molecule events that caused one strain to respond to therapy and the other to be resistant. They determined that TLR9-induced protection occurs when the proteins IFN-á/â were activated. The resistance to protection in the SCID mice was due to a mutation that impairs IFN-á/â signaling in these mice. Additional experiments with mice developed without IFN-á/â further verified the proteins’ role in intestinal homeostasis.

Sue Pondrom | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>