Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Olfactory receptor cells may provide clues to psychiatric disease


Nose cells provide a window into the brain

In the first study to examine living nerve cells from patients with psychiatric disease, scientists from the Monell Chemical Senses Center, the University of Pennsylvania, and collaborating institutions report altered nerve cell function in olfactory receptor neurons from patients with bipolar disorder. Like other psychiatric and neurodegenerative disorders, bipolar disorder affects nerve cells in the brain, making it difficult to study underlying neurobiological causes of the disease during its actual course. According to senior author Nancy Rawson, PhD, a Monell cellular biologist, "Previous studies have used non-nerve cells, such as fibroblasts or red blood cells, to examine how cells function in patients with bipolar disorder. But since this is a psychiatric disorder, we need to understand what’s going on in nerve cells."

Olfactory receptor neurons (ORNs), located in a small patch of epithelium inside the nose, are nerve cells that contain receptors for the thousands of odorant molecules detected by humans. Easily obtained using a simple 5-minute biopsy procedure, ORNs share many characteristics with nerve cells in the brain. These features make ORNs a useful model to study the neural effects of psychiatric disease. Calcium is integral to properly-functioning nerves, and previous studies have implicated dysfunctions of cellular calcium metabolism as a contributing factor to bipolar disorder. Changes in how much calcium is inside ORNs and other nerve cells tell researchers how the nerves respond to stimulation.

In the study, researchers used a fluorescence imaging technique to measure basal and stimulated calcium levels in ORNs from 17 patients with bipolar disorder and age- and sex-matched healthy controls. Seven patients were medication free and 10 were being treated with mood-stabilizing drugs. Calcium responses were predominantly decreased in nerves from patients with bipolar disease. Rawson comments, "The deceased calcium responses point to a specific set of pathways that will allow us to narrow the target for identifying the defect of calcium regulation associated with bipolar disorder. Once identified, these pathways will provide new targets for drug development."

The researchers regard the ORNs as a valuable model which will provide needed insight into the neurobiological factors underlying psychiatric disease. Rawson notes, "The calcium dysregulation that we see in ORNs of bipolar patients is different from what has previously been reported in studies using non-neuronal cells. This suggests that nerve cells might behave differently from other cell types."

Lead author Chang-Gyu Hahn, MD, PhD, a psychiatrist at the University of Pennsylvania School of Medicine, observes, "A major issue in treating bipolar disorder – or psychiatric disorders in general – is that it is hard to predict which medication a patient will respond to. So, clinicians go through a series of trials and errors and the patient suffers until the right medication is found. It is possible that ORNs might be developed as a ’medication responsiveness test’ to indicate which medication a patient should be on."

Hahn continues, "Another strength of this approach is that we can sample neurons from patients during specific stages of the illness and therefore we will be able to distinguish trait from state dependent characteristics of the disorder, which is particularly important in understanding mood disorders. "

Co-lead author was Monell neurobiologist George Gomez, PhD, currently at the University of Scranton. Also contributing to the studies were Diego Restrepo, PhD, University of Colorado; Eitan Friedman, PhD, MCP Hahnemann University; Richard Josiassen, PhD, Arthur P. Noyes Research Foundation and University of Pennsylvania; Edmund A. Pribitkin, MD and Louis Lowry MD, Thomas Jefferson University; and Robert J. Gallop, West Chester University.

Leslie Stein | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>