Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered protein an important tool for sleeping sickness research

01.03.2005


Sixty million people in 36 countries of sub-Saharan Africa are threatened daily by a deadly parasitic disease known as African sleeping sickness. The disease is caused by organisms called trypanosomes, which are spread by the tsetse fly. African sleeping sickness affects approximately 500,000 people in sub-Saharan Africa, a quarter of whom will die this year. Because the trypanosome has an exceptional genetic strategy for evading the human immune system and resisting treatment, the current treatment for this disease is melarsopal, an antiquated drug with terrible side effects, including death.



In the February issue (Volume 17, Issue 3) of the journal Molecular Cell, scientists in the Marine Biological Laboratory’s (MBL’s) Josephine Bay Paul Center for Comparative Molecular Biology and Evolution report their discovery of a protein called JBP2, which will help them test their hypothesis that a uniquely modified DNA base called base J is a key component of the trypanosome’s mechanism for evading the immune system. If the hypothesis is correct, it will bring scientists closer to developing a more effective drug for treating African sleeping sickness.

The trypanosome evades the human immune system because it is coated with a surface antigen called variant surface glycoprotein (VSG). The human body makes antibodies for VSG, but trypanosomes randomly switch to another antigen when the organisms divide and reproduce. Trypanosomes whose VSG has switched evade the antibodies the human immune system made to fight the original antigen, thus assuring the long-term survival of these parasites within their hosts. The trypanosome has approximately 1,000 different VSG genes, but only expresses one at a time while the others are somehow silenced. This genetic trick, called antigenic variation, has severely limited sleeping sickness treatment options and essentially ruled out the possibility of a vaccine.


MBL trypanosome experts in Robert Sabatini’s lab hypothesize that base J (beta-D-glucosylhydroxymethyluracil) may play an important role in the gene silencing process behind antigenic variation. With the goal of learning how the organism regulates the process of antigenic variation, the scientists have been trying to understand how the trypanosome makes base J.

The discovery of JBP2, a member of a protein family that helps control DNA-related functions, is a significant breakthrough in this quest because Sabatini and his colleagues were able to demonstrate that the protein is the key regulator of base J synthesis. This will provide the scientists a new tool to elucidate the biological function of this unique modified DNA base in the regulation of antigenic variation.

If base J does indeed play a role in the gene silencing that enables the trypanosome to change its antigen coating, the discovery of JBP2 may one day enable scientists to create a drug that prevents the manufacture of base J, affecting the trypanosome’s ability to vary its antigenic coating, and therefore allowing the human immune system to kill it.

Understanding trypanosomes at the molecular level is key to fighting African sleeping sickness and diseases caused by similar parasites.

Gina Hebert | EurekAlert!
Further information:
http://www.mbl.edu

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>