Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered protein an important tool for sleeping sickness research

01.03.2005


Sixty million people in 36 countries of sub-Saharan Africa are threatened daily by a deadly parasitic disease known as African sleeping sickness. The disease is caused by organisms called trypanosomes, which are spread by the tsetse fly. African sleeping sickness affects approximately 500,000 people in sub-Saharan Africa, a quarter of whom will die this year. Because the trypanosome has an exceptional genetic strategy for evading the human immune system and resisting treatment, the current treatment for this disease is melarsopal, an antiquated drug with terrible side effects, including death.



In the February issue (Volume 17, Issue 3) of the journal Molecular Cell, scientists in the Marine Biological Laboratory’s (MBL’s) Josephine Bay Paul Center for Comparative Molecular Biology and Evolution report their discovery of a protein called JBP2, which will help them test their hypothesis that a uniquely modified DNA base called base J is a key component of the trypanosome’s mechanism for evading the immune system. If the hypothesis is correct, it will bring scientists closer to developing a more effective drug for treating African sleeping sickness.

The trypanosome evades the human immune system because it is coated with a surface antigen called variant surface glycoprotein (VSG). The human body makes antibodies for VSG, but trypanosomes randomly switch to another antigen when the organisms divide and reproduce. Trypanosomes whose VSG has switched evade the antibodies the human immune system made to fight the original antigen, thus assuring the long-term survival of these parasites within their hosts. The trypanosome has approximately 1,000 different VSG genes, but only expresses one at a time while the others are somehow silenced. This genetic trick, called antigenic variation, has severely limited sleeping sickness treatment options and essentially ruled out the possibility of a vaccine.


MBL trypanosome experts in Robert Sabatini’s lab hypothesize that base J (beta-D-glucosylhydroxymethyluracil) may play an important role in the gene silencing process behind antigenic variation. With the goal of learning how the organism regulates the process of antigenic variation, the scientists have been trying to understand how the trypanosome makes base J.

The discovery of JBP2, a member of a protein family that helps control DNA-related functions, is a significant breakthrough in this quest because Sabatini and his colleagues were able to demonstrate that the protein is the key regulator of base J synthesis. This will provide the scientists a new tool to elucidate the biological function of this unique modified DNA base in the regulation of antigenic variation.

If base J does indeed play a role in the gene silencing that enables the trypanosome to change its antigen coating, the discovery of JBP2 may one day enable scientists to create a drug that prevents the manufacture of base J, affecting the trypanosome’s ability to vary its antigenic coating, and therefore allowing the human immune system to kill it.

Understanding trypanosomes at the molecular level is key to fighting African sleeping sickness and diseases caused by similar parasites.

Gina Hebert | EurekAlert!
Further information:
http://www.mbl.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>