Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover scaffolds in the brain’s wiring diagram

01.03.2005


Many implications seen for biomedical research



The human brain is estimated to contain 100 billion neurons (the number 1 followed by eleven zeros). Because a typical neuron forms ~1,000 synaptic connections to other neurons, the total number of synapses in the brain is estimated to be 100 trillion (the number 1 followed by 14 zeros). The thin projections from neurons that form connections with each other (axons and dendrites) can be thought of as the biological "wiring" of the brain.

Neuroscientists already know that brain neurons can and do form specific rather than random connections with each other to generate the observed wiring diagram of the brain. However, the precise patterns of such non-random connections, how the patterns are formed, and how these patterns underlie the brain’s extraordinary information processing capacity are important questions that Cold Spring Harbor Laboratory theoretical neuroscientist Dmitri Chklovskii is exploring. An article published in this week’s issue of PLoS Biology (March 1, 2005) describes Chklovskii’s discovery of strongly preferred patterns of connectivity or scaffolds within the wiring diagram of the rat brain. The patterns are likely to correspond to modules that play an important role in brain function not only in rats, but also in humans.


Chklovskii and his colleagues use statistical analysis and mathematical modeling--coupled with in vivo, experimental observations--to search for recurrent, non-random patterns of local connectivity within the vast thickets of brain wiring diagrams. Finding such patterns would be strong evidence for the presence of functional modules (for example, "local cortical circuits") that process information. The researchers recently uncovered evidence of such functional modules by using two complementary approaches.

In the first study--published in December--they chose the nematode worm C. elegans as a relatively simple model system. Studies by others had determined that this organism has 302 neurons, and had mapped which neurons connect with which. However, those studies did not characterize non-random patterns of connectivity in a rigorous way.

When Chklovskii and his colleagues considered all 13 possible patterns of connectivity that can occur among three neurons (one such "triplet" pattern being "neuron A connects to B, B connects to C, and A connects to C"), they found that three particular patterns, including the aforementioned one, stood out as appearing far more frequently in the C. elegans wiring diagram than they would by chance. They also discovered that some triplet patterns were less common than predicted by chance. Taking the analysis a step further, Chklovskii found that among all 199 possible patterns of connectivity that can occur among four neurons, one particular pattern stood out in C. elegans as appearing more frequently than it would by chance.

Significantly, Chklovskii considered whether the frequent connectivity patterns or "motifs" they discovered might be accounted for by previously known principles of neurobiology. They found no such explanation for the existence of the motifs, indicating that further analysis of the motifs may reveal important information about nervous system structure and function.

Because it was based purely on anatomical data collected by electron microscopy, Chklovskii’s C. elegans study did not include telling information about the strengths of connections between neurons. Therefore, to extend his findings into the physiological realm, Chklovskii collaborated with researchers at Brandeis University on the study published this week in PLoS Biology. The Brandeis group had previously collected one of the largest electrophysiological data sets of its kind ever recorded: measurements of the connectivity of some 3,000 individual neurons in the rat visual cortex.

Chklovskii realized that the Brandeis data could be used to explore his ideas concerning functional modules in the brain. He and his colleagues detected some of the very same non-random patterns of connectivity in the rat brain as they had observed in C. elegans. More importantly, they found that most connections formed by neurons in the rat visual cortex are weak, and that the stronger connections (~17% of all connections) account for as much as half of the total synaptic strength of a particular network. In part because more strongly connected neurons fire more reproducibly, Chklovskii proposes that strong cortical synapses--with particular connectivities--act as a network "scaffold" that is likely to generate reproducible patterns of activity and play an important role in brain function. "Local brain circuits can therefore be viewed as a ’skeleton’ of strong connections in a sea of weaker ones," says Chklovskii.

Peter Sherwood | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>