Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny flies could lead to understanding potential for non-embryonic stem cells

01.03.2005


It has long been thought that cells that regenerate tissue do so by regressing to a developmentally younger state. Now two University of Washington researchers have demonstrated that cells can regenerate without becoming "younger."


Biologists for years have studied stem cells, the ones responsible for replenishing and regenerating an organism’s structures, aiming to find the means to selectively regenerate tissue such as that of the heart or liver in much the same way that the body heals a broken leg.

Much hope rests with non-embryonic stem cells, which can renew themselves and, within limits, produce all the specialized cell types from the type of tissue in which they originate. But scientists have puzzled over just how such cells function, how they can be spurred to create new tissue, and just when in their development it is determined what tissue they can produce.

Gerold Schubiger, a UW biology professor, and Anne Sustar, a research technician in his laboratory, used groups of cells, called imaginal discs, in fruit fly larvae to provide an easily controlled system to study regeneration. Imaginal discs convert genetic information that determines the specific tissue into which the cells will develop in the adult fly. For example, leg discs form only adult legs and wing discs form only adult wings. Normally, all of those cells develop into that specific tissue, either when the fly reaches the adult stage or when regenerating a lost structure, such as parts of a leg disc.



The exception is a very small number of cells in each disc, located at what the researchers term the "weak point." These cells change their ultimate destiny, or fate, as the disc regenerates tissue so that, for example, instead of regenerating leg structures they form wing structures. Such fate changes are known as transdetermination, and they demonstrate that a few cells have development potential that is adaptable rather than firmly fixed, Schubiger said. That has parallels in the adaptable development potential found in some vertebrate stem cells, he said.

In the case of the fruit flies, regeneration and transdetermination begin in the "weak point" of the leg imaginal disc when a signaling gene called wingless activates a selector gene called vestigial, which spurs wing development in that stem cell-like region. "In all organisms, selector genes activate or repress other genes that trigger production of different organs. Researchers studying cells with adaptable development potential want to know when, where and how those cells change their fate," Schubiger said.

In previous research involving vertebrates, he said, it was unclear whether cells involved in tissue regeneration had reverted to a younger state or were the same age as other cells in the organism. But he noted that it has been generally accepted that the regenerating cells revert to a younger state.

If that is true, those cells would have to divide faster than the others in the organism because younger cells divide faster than older cells. Sustar and Schubiger tested the theory in fruit flies, following the cells to see when and where the vestigial gene was activated. Since cells in the disc divide more slowly as they age, the researchers could see whether the cells involved in regeneration had reverted to a younger cycle. They found that neither cells involved in regeneration nor those that were changing their fate to become a different type of tissue had the characteristics, including the faster doubling time, of younger cells.

Sustar is the lead author of a paper describing the work, published in the Feb. 11 edition of the journal Cell. The work was supported by a grant from the National Institutes of Health.

Understanding the wingless gene’s function is key to understanding how stem cells can adapt their ultimate destiny, from leg tissue to wing tissue for example, Schubiger said.

There are many examples in which the wingless gene causes stem cells to change fates, he added. In hair follicle cells, for example, the wingless gene changes stem cells to skin cells. In a mouse, high levels of wingless genes change a specific group of lung cells into intestine cells.

"This work challenges old concepts of regeneration and has opened new avenues for stem cell research," Schubiger said. "This remarkable observation has not been reported in any stem cell research. We have set the stage to look at the cell cycle in other stem cell systems."

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>