Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New binding target for oncogenic viral protein

28.02.2005


The DNA tumor virus simian virus 40 produces the Large T antigen which inactivates two of the cell’s most important cancer-preventing proteins, p53 and pRb. In a study published in the Journal of Biological Chemistry, researchers at the Fred Hutchinson Cancer Research Center report the discovery of an additional target for T antigen--a protein called Fbw7.



The Fbw7 gene is located in a chromosomal region that is deleted in up to 30% of human tumors. "Fbw7 is itself an important tumor suppressor which makes it an attractive choice for inactivation by Large T," explained Dr. Markus Welcker, the study’s first author.

The research appears as the "Paper of the Week" in the March 4 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.


DNA tumor viruses proliferate by hijacking their host cell’s DNA replication machinery. In order to do this, they have evolved mechanisms to override normal cellular replication controls. Simian virus 40 (SV40) accomplishes this task by producing the highly oncogenic large T antigen. This protein corrupts the cellular checkpoint mechanisms that guard cell division and the transcription, replication and repair of DNA. T antigen also inactivates some of the most important proteins that protect cells against malignant transformation, including tumor suppressor proteins p53 and pRb.

In the Journal of Biological Chemistry paper, Dr. Welcker and Dr. Bruce Clurman report that T antigen also binds to another tumor suppressor, Fbw7. This protein is part of a ubiquitin ligase complex that adds ubiquitin to proteins to mark them for destruction by the cell. Fbw7 recognizes a destruction signal on certain proteins that need to be degraded and brings them in close proximity to the enzymes that attach ubiquitin. The proteins recognized by Fbw7 play key roles in cell division, cell growth, differentiation, and cell death. "These proteins are also some of the most broadly acting cellular oncogenes, and include cyclin E, c-Myc, Notch, and c-Jun," noted Dr. Clurman. "When Fbw7 is mutated in cancers, deregulation of these oncogenic Fbw7 targets is thought to contribute to cancer. SV40 T antigen contains a motif that mimics the destruction signal found in these proteins." However, unlike the other substrates recognized by Fbw7, T antigen is not destroyed by the cell.

Drs. Clurman and Welcker suspect that by acting as a decoy and binding to Fbw7, T antigen protects cellular Fbw7 targets that facilitate viral replication and tumorigenesis. "I think this work underlines the importance of Fbw7 as an emerging tumor suppressor and the consequences of its loss in tumors," Dr. Welcker emphasized.

"The study of DNA tumors viruses has been an extremely important tool in understanding the cellular pathways that regulate cell division and are disrupted in cancer. Understanding the mechanisms through which these viruses interact with the cellular machinery that regulates cell division may lead to new insights into the pathways that cause cancer. This is an important step to designing new cancer treatment strategies that target these pathways," concluded Dr. Clurman.

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org
http://www.jbc.org

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>