Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular porthole connects odors to brain

25.02.2005


Porthole used in both odor-detecting cells and digestion-aiding cells



A cellular "porthole" known best for its role in the digestive system apparently has a major role in helping the brain sense odors, Johns Hopkins scientists report in the Feb. 17 issue of Neuron. The porthole, which lets chloride into cells, is also critical in digestion, hearing, balance, and fertility. The researchers suggest that digestive system cells and odor-detecting cells use the same chloride porthole, or ion transporter -- the former to facilitate secretion of digestive juices, and the latter to communicate information about scents to the brain.

Although scientists have long known that odor-sensing cells require lots of charged chloride atoms, or ions, to relay odor signals to the brain, they did not know how cells keep levels of chloride high inside of the cells. Now Hopkins researchers have shown that these high chloride levels in odor-detecting cells depend on the same transporter, known as NKCC1, used in many other types of cells as well. "It’s not unusual for the body to use the same machinery to solve different problems," notes one of the lead authors, Jonathan Bradley, Ph.D., a postdoctoral fellow in neuroscience. "Chloride is a kind of jack-of-all-trades that cells can hijack to do what they want."


Odor-detecting nerve cells are long and thin, extending from the tissues lining the nose where odors are sensed all the way to the brain. When you smell cookies baking, odor molecules bind to these cells, triggering a series of molecular "gates" on the cell surface to open. The open gates let charged ions, including chloride, move in and out of the cell, creating differences in charge between the inside and outside of the cell. Such differences allow electrical signals to travel to the brain, telling you that home-made cookies are nearby.

Bradley and co-author Johannes Reisert, Ph.D., suspected NKCC1 might be involved in this process precisely because of the transporter’s known importance in regulating chloride in many other tissues. Since NKCC1 appears in other cell types, and because odor-detecting nerve cells neurons need large amounts of chloride to sense odors, Reisert and Bradley hypothesized that NKCC1 was responsible for maintaining high chloride levels in odor-sensing cells too.

To test their idea, the researchers exposed individual odor-detecting nerve cells from mice to odor molecules. Unlike normal cells, those without functional NKCC1 had no detectable chloride movement, indicating that the NKCC1 transporter was indeed responsible for the necessary chloride current.

Bradley and Reisert also discovered that the porthole was located on an unexpected region of the odor-detecting cell. However, its location on these cells corresponds to its location on cells that line the digestive tract -- reinforcing the idea of "borrowed" machinery. "At first we were surprised to find this location of the transporter," says Bradley, "but in hindsight it makes sense -- both types of cells need to keep chloride high in order to do their jobs, and the transporter’s location helps them."

Now that the chloride-controlling machinery in the nose is known, scientists can probe details of chloride’s involvement in sending information to the brain, the researchers say. Bradley and Reisert suspect that having lots of chloride available in odor-detecting cells may help the brain discriminate between different smells. "The involvement of chloride might also make the cells’ response to odor more robust and reliable," says Reisert, also a postdoctoral fellow in neuroscience.

The researchers plan to study the behavior of mice without NKCC1 and are now attempting to clone and characterize the chloride transporter to get a better sense of how chloride is required for odor detection.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.neuron.org/

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>