Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular porthole connects odors to brain

25.02.2005


Porthole used in both odor-detecting cells and digestion-aiding cells



A cellular "porthole" known best for its role in the digestive system apparently has a major role in helping the brain sense odors, Johns Hopkins scientists report in the Feb. 17 issue of Neuron. The porthole, which lets chloride into cells, is also critical in digestion, hearing, balance, and fertility. The researchers suggest that digestive system cells and odor-detecting cells use the same chloride porthole, or ion transporter -- the former to facilitate secretion of digestive juices, and the latter to communicate information about scents to the brain.

Although scientists have long known that odor-sensing cells require lots of charged chloride atoms, or ions, to relay odor signals to the brain, they did not know how cells keep levels of chloride high inside of the cells. Now Hopkins researchers have shown that these high chloride levels in odor-detecting cells depend on the same transporter, known as NKCC1, used in many other types of cells as well. "It’s not unusual for the body to use the same machinery to solve different problems," notes one of the lead authors, Jonathan Bradley, Ph.D., a postdoctoral fellow in neuroscience. "Chloride is a kind of jack-of-all-trades that cells can hijack to do what they want."


Odor-detecting nerve cells are long and thin, extending from the tissues lining the nose where odors are sensed all the way to the brain. When you smell cookies baking, odor molecules bind to these cells, triggering a series of molecular "gates" on the cell surface to open. The open gates let charged ions, including chloride, move in and out of the cell, creating differences in charge between the inside and outside of the cell. Such differences allow electrical signals to travel to the brain, telling you that home-made cookies are nearby.

Bradley and co-author Johannes Reisert, Ph.D., suspected NKCC1 might be involved in this process precisely because of the transporter’s known importance in regulating chloride in many other tissues. Since NKCC1 appears in other cell types, and because odor-detecting nerve cells neurons need large amounts of chloride to sense odors, Reisert and Bradley hypothesized that NKCC1 was responsible for maintaining high chloride levels in odor-sensing cells too.

To test their idea, the researchers exposed individual odor-detecting nerve cells from mice to odor molecules. Unlike normal cells, those without functional NKCC1 had no detectable chloride movement, indicating that the NKCC1 transporter was indeed responsible for the necessary chloride current.

Bradley and Reisert also discovered that the porthole was located on an unexpected region of the odor-detecting cell. However, its location on these cells corresponds to its location on cells that line the digestive tract -- reinforcing the idea of "borrowed" machinery. "At first we were surprised to find this location of the transporter," says Bradley, "but in hindsight it makes sense -- both types of cells need to keep chloride high in order to do their jobs, and the transporter’s location helps them."

Now that the chloride-controlling machinery in the nose is known, scientists can probe details of chloride’s involvement in sending information to the brain, the researchers say. Bradley and Reisert suspect that having lots of chloride available in odor-detecting cells may help the brain discriminate between different smells. "The involvement of chloride might also make the cells’ response to odor more robust and reliable," says Reisert, also a postdoctoral fellow in neuroscience.

The researchers plan to study the behavior of mice without NKCC1 and are now attempting to clone and characterize the chloride transporter to get a better sense of how chloride is required for odor detection.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.neuron.org/

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>