Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify immune-system mutation

25.02.2005


The spontaneous mutation was discovered in a strain of Fox Chase laboratory mice—a potentially useful new research tool for studying the development of immune response



A team of Fox Chase Cancer Center scientists led by immunologist Dietmar J. Kappes, Ph.D., has identified the genetic mutation that keeps a mouse strain from developing white blood cells, or lymphocytes, called helper T cells. The report by Kappes and his colleagues appears in the Feb. 24 issue of Nature. Kappes’ laboratory first discovered the mice with this naturally occurring defect in Fox Chase’s laboratory animal facility in 1997. Known as "helper deficient" or HD mice, they are proving to be useful for exploring the pathways of lymphocyte development, according to Kappes.

Helper T cells, so called because they arise from the thymus gland, are essential for combating intracellular viral and bacterial infections (cell-mediated immunity) and also for helping other white blood cells (B cells, derived from bone marrow) generate antibodies against foreign agents that enter the body. Other T cells are known as killer cells because they attack foreign invaders more directly.


"The maturation of T cells involves key branch points at which cells choose one of two different pathways, going on to become helper cells or killer cells," Kappes said. His goal is to understand how T cells specialize to do different jobs.

Commitment to the helper or killer lineages correlates precisely with the restriction of the T-cell receptor toward either class I or class II major histocompatibility complex (MHC) molecules. Most helper T cells carry a surface protein called CD4, which is attracted to class II MHC. Killer cells carry the CD8 protein, attracted to class I MHC. However, the underlying molecular pathways that regulate this process have remained obscure.

"The mutant HD mice are unable to generate mature helper T cells, even though their immature T cells carry the CD4 protein," Kappes explained. "Instead, the mutation redirects them to the killer-cell pathway.

"Our new study identifies this defect as a point mutation in the zinc finger transcription factor Th-POK. We show that when the normal form of this factor is active in all developing lymphocytes, it can redirect would-be killer cells to the CD4 helper T cell lineage. This indicates that Th-POK is a master regulator of the maturation process."

Understanding the development of critical components of the immune system can contribute to medical advances in stimulating desirable immune responses and halting undesirable immune reactions, Kappes said. This understanding can further progress against various immune disorders, allergies and certain cancers, such as those of the blood and bone marrow, that involve a compromised immune system. "As one example, a decrease in the number of CD4 T cells is the primary mechanism by which HIV causes AIDS," Kappes said.

The helper-deficient mice his team discovered represent the second time that a naturally occurring mutant strain has been found and bred at Fox Chase. In 1981, the laboratory group of Melvin Bosma, Ph.D., discovered mice with severe combined immune deficiency (SCID), a condition that also affects humans. In addition to providing a unique animal model to study the SCID syndrome, SCID mice have become a highly valuable tool for studying the immune system and are now used by scientists worldwide.

Kappes’ co-authors on the new Nature paper include Fox Chase postdoctoral associates Xiao He, Ph.D., Xi He, Ph.D., and Vibhuti P. Dave, Ph.D., (who is now at the Institute of Clinical Research of Montreal); Fox Chase scientific technician Yi Zhang; Xiang Hua, manager of Fox Chase’s transgenic mouse facility; Fox Chase research associate Emmanuelle Nicolas, Ph.D.; and Weihong Xu, Ph.D., and Bruce A. Roe, Ph.D., both of the University of Oklahoma’s department of chemistry and biochemistry.

Karen Carter Mallet | EurekAlert!
Further information:
http://www.fccc.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>