Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It’s not all genetic: Common epigenetic problem doubles cancer risk in mice

25.02.2005


In experiments with mice, a team of scientists from the United States, Sweden and Japan has discovered that having a double dose of one protein is sufficient to change the normal balance of cells within the lining of the colon, thereby doubling the risk that a cancer-causing genetic mutation will trigger a tumor there. Roughly 10 percent of people have this double protein dose as well.



In the Feb. 24 online version of Science, the researchers report that mice engineered to have a double dose of insulin-like growth factor 2 (IGF2) develop more so-called precursor cells within the lining of the colon than normal mice. When these mice also carried a colon-cancer-causing genetic mutation, they developed twice as many tumors as those with normal IGF2 levels, the researchers report. "Both clinically and scientifically, this discovery should expand attention in colon cancer research to earlier events, situations present well before tumors appear," says the study’s leader, Andrew Feinberg, M.D., M.P.H., professor of medicine and director of the Center for Epigenetics in Common Human Disease at Johns Hopkins. "In the mice with a double dose of IGF2, everything is pretty normal except for the extra precursor cells," says Christine Iacobuzio-Donahue, M.D., assistant professor of pathology and oncology. "But when the genetic mutation is present, too, we found a clear cost for what otherwise appears to be a benign effect of extra IGF2."

The team’s analysis of colon tissue samples from a dozen or so Johns Hopkins patients with suspected colon cancer suggests that IGF2’s effect in people may be similar, the researchers report. A larger study of samples from patients with and without suspected colon cancer is underway, Feinberg notes. In the mice -- as well as in about 30 percent of colon cancer patients and 10 percent of the general population -- the extra IGF2 stems not from a genetic problem, or mutation, but an "epigenetic" problem that improperly turns on the copy of the IGF2 gene that should remain off. Unlike most genes, the copy of IGF2 that should be silent depends only on which parent it came from, a situation called genomic imprinting. For IGF2, the copy inherited from the mother is always supposed to be turned off.


In the mice and in some people, however, cells lack the epigenetic "marks" that sit on the DNA and keep the maternally inherited copy turned off. As a result, cells make a double dose of the IGF2 protein and are said to have "loss of imprinting" of IGF2. Although Feinberg and others have already noted an association between loss of imprinting of IGF2 and colon cancer in people, the current experiments were designed to find out whether the loss of imprinting is involved in cancer’s development or just in its progression. "Most researchers, including me, expect epigenetic differences to influence progression -- whether a tumor would grow slowly or quickly, or whether it would spread," says Feinberg. "But, in this case, our results show that loss of imprinting of IGF2 contributes to colon cancer’s development in the mice. It doesn’t cause tumors directly, but it creates an environment which is ripe for cancer to start."

Because precursor cells in the colon’s lining had been identified as a likely starting point for tumors, Feinberg and his team tossed a cancer-causing genetic mutation into the mix. The IGF2 mice were crossed with mice carrying a mutation in a gene called APC, which had been tied to colon cancer by researchers studying families with excessive growths, or polyps, in the colon. Mice with extra IGF2 and the APC mutation developed twice the number of tumors as mice with the mutation but whose IGF2 levels were normal. The tumors grew at the same rate in both sets of mice, suggesting that more tumors get started in the mice with extra IGF2, notes Feinberg. "In the mice, loss of imprinting of IGF2 roughly doubles the risk that the genetic mutation will cause a tumor," says postdoctoral fellow Atsushi Kaneda, Ph.D. "Double the risk may not seem like much, but this loss of imprinting is common."

The researchers’ mice mirror two situations in people because the double dose of IGF2 was accomplished in two ways. One set of mice, obtained from Shirley Tilghman at Princeton, have a double dose of IGF2 because they are missing another gene, H19, whose sequence overlaps the region that usually shuts off one copy of IGF2. As a result, these mice lack H19 and have double IGF2. To isolate the effect of the extra IGF2, Rolf Ohlsson at the Uppsala University, Sweden, developed a set of mice missing only the control region for IGF2; their H19 gene was intact. These mice likely mimic the 30 percent of colon cancer patients and 10 percent or so of the human population who have loss of imprinting of IGF2. Only the Princeton mice have been crossed with the APC mice. Both the Princeton and the Swedish mice have the extra precursor cells in the lining of the colon, suggesting the effect on cancer development would be similar.

Co-author Dan Longo, M.D., of the National Institute on Aging notes that the mice with both double IGF2 and the APC mutation should be a useful animal model to evaluate the impact of colon cancer prevention strategies, including dietary interventions and targeted drugs.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.sciencemag.org

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>