Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Plants, animals share molecular growth mechanisms


Malfunctioning genes that affect plant growth and development cause distortion in tiny hairs, called trichomes, that are found on most cells. Compared with normal plants, the trichome branch lengths are shorter and slightly twisted, and the base of the trichome is abnormally elongated and swollen. (Photo courtesy of Dan Szymanski)

A newly discovered plant protein complex that apparently switches on plants’ growth machinery, has opened a scientific toolbox to learn about both plant and animal development, according Purdue University scientists.

The protein complex triggers communication between molecules along a pathway that leads to the creation of long protein strings, called actin filaments, that are necessary for cellular growth, said Dan Szymanski, agronomy associate professor and lead author of the study. Knowledge of the biochemical reactions involved in this process eventually may allow researchers to design plants better able to protect themselves from insects and disease. "These genes and their proteins are required for normal development and for normal cell-to-cell adhesion," Szymanski said. "They affect the growth of the whole plant and also the shape and size of types of cells in the plant." Results of the study are published in the February issue of the journal The Plant Cell. "Perhaps by learning about this pathway for actin filament formation, we can engineer plant cells to grow in different ways or alter how cells respond to external stimuli so they can defend themselves against insect or fungal attacks," Szymanski said.

A protein complex known as Actin Related Protein 2/3 (ARP2/3) is a cellular machine that controls formation of actin filaments, which are important for cell growth and movement. Actin filaments organize the inside of the cell and allow it to grow, and they determine where certain structures in a cell are positioned and how plants respond to gravity and light. Szymanski’s team used a deformed version of a common research plant, Arabidopsis thaliana, and specifically looked at small, hairlike structures that exist on most cells. They found that the shape and size of these hairs, or trichomes, readily show when genes affecting actin filaments are askew and causing altered growth. The researchers previously had learned that a large protein complex, known as WAVE, activated ARP2/3, but they didn’t know specifically which WAVE protein was the actual switch. Their latest research showed that a WAVE protein they’ve dubbed DISTORTED3 (DIS3) turns on APR 2/3, which in turn triggers formation of new, growing actin filaments.

Because some genes have survived through time as multicellular life evolved, they have been conserved in both plants and animals, Szymanski said. So, some of the plant proteins that comprise the ARP2/3 and the WAVE complexes are interchangeable with proteins in animals. Others proteins are not interchangeable, and Szymanski’s research team is delving into how this affects the growth process. "DIS3 has two ends that are common in both plant and animal proteins," he said. "But DIS3 has a very large segment in the middle that is specific to plants. We’d like to know if this section is important and whether it regulates DIS3 or the whole WAVE complex." For growth and development biochemical processes to proceed normally, activators such as ARP 2/3 are needed to trigger actin filaments’ formation and growth, Szymanski said. However, scientists don’t know the specific function of certain actin filaments. The molecular tools Szymanski’s research team developed will help scientists learn more about these functions in both plants and animals.

The other researchers on this study were Dipanwita Basu and Salah El-Din El-Essal, research assistants; postdoctoral students Jie Le, Chunhua Zhang and Gregore Koliantz; Eileen Malley, laboratory manager, all of the Department of Agronomy; and Shanjin Huang, postdoctoral student, and Christopher Staiger, professor, both of the Department of Biological Sciences. Staiger and Szymanski also are members of the Purdue Motility Group.

The Energy Biosciences Division of the Department of Energy, the USDA National Research Initiative and the Purdue Agricultural Research Program provided funding for this research.

Susan A. Steeves | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>