Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly-discovered class of genes determines - and restricts - stem cell fate

24.02.2005


Research on adult stem cells found in the skin hints at a new class of genes, according to a study from investigators at the University of Pennsylvania School of Medicine. These genes – dubbed pangenes – can both govern a stem cell’s fate and put a hold on future differentiation until the time is right. Understanding the molecular control of these genes has implications for therapies that involve tissue regeneration. The researchers found that Pax3, a gene critical in embryonic development of melanocytes – cells that make and store the pigments in the skin and hair – is also expressed in adult stem cells in the skin.

"Our findings told us that a recapitulation of an embryonic program is occurring in resident stem cells in adult skin," explains Jon Epstein, MD, Professor of Medicine, Cardiovascular Division. "These few rare stem cells were expressing genes that previously had only been known to be expressed in a developing embryo. That was the first clue that we were on to something new." Epstein and colleagues report their findings in the February 24th issue of Nature.

The scientists found that Pax3 plays dual – and somewhat seemingly contradictory – roles in adult stem cells: it directs them to become melanocytes, but simultaneously prevents them from differentiating completely. "It gets the show going, but at the same time, prevents the final act," says Epstein. "I call this dual function a "biological capacitor," because Pax3 tells the cell: Get ready to go, but at the same time won’t let it proceed."



Pangenes Express Behavioral Qualities of Pan and Peter Pan

Epstein notes that this research is conceptually new since he suggests that a single gene can both tell a cell what it should become and restrict its fate by preventing differentiation. The ability of a single biochemical factor or complex of factors to have this dual role may represent a new general paradigm for developmental and stem-cell biology. "My idea is that this is a new family of genes--they can both determine the cell type, but also put the breaks on differentiation," says Epstein. "We have named them pangenes, after the Greek god Pan and Peter Pan, who were able to orchestrate complex events while never growing old."

Epstein thinks that this concept may also be important for understanding the cell of origin for a number of tumors. Pax3 is known to be involved in some tumors, which adds evidence to the stem-cell origin for some cancers. This theory proposes that many cancers may arise from normally scarce resident stem cells that grow uncontrollably, rather than from the vast majority of differentiated cells that make up organs where cancers are found. If this theory is correct, resident stem cells in the skin could be the cells that turn into skin cancers like melanoma. Understanding stem cell biology may therefore be important for developing new therapies for cancer.

Adult resident stem cells have been identified in many types of organs and may be a potential reservoir for tissue regeneration. A fundamental understanding of the molecular programs that regulate stem-cell differentiation is necessary for harnessing this potential.

Ed Federico | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>