Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant derivative attacks the roots of leukemia

23.02.2005


A daisy-like plant known as Feverfew or Bachelor’s Button, found in gardens across North America, is the source of an agent that kills human leukemia stem cells like no other single therapy, scientists at the University of Rochester Medical Center’s James P. Wilmot Cancer Center have discovered. Their investigation is reported in the online edition of the journal, Blood.

It will take months before a useable, pharmaceutical compound can be made from parthenolide, the main component in Feverfew. However, UR stem cell expert Craig T. Jordan, Ph.D., and Monica L. Guzman, Ph.D., lead author on the Blood paper, say their group is collaborating with University of Kentucky chemists, who have identified a water-soluble molecule that has the same properties as parthenolide.

The National Cancer Institute has accepted this work into its rapid access program, which aims to move experimental drugs from the laboratory to human clinical trials as quickly as possible. "This research is a very important step in setting the stage for future development of a new therapy for leukemia," says Jordan. "We have proof that we can kill leukemia stem cells with this type of agent, and that is good news." Parthenolide is the first single agent known to act on myeloid leukemia at the stem-cell level, which is significant because current cancer treatments do not strike deep enough to kill mutant cells where the malignancy is born.



In other words, even the most progressive leukemia treatment, a relatively new drug called Gleevec, is effective only to a degree. It does not reach the stem cells, so "you’re pulling the weed without getting to the root," Jordan says. Feverfew has been used for centuries as an herbal remedy to reduce fevers and inflammation, to prevent migraine headaches, and to ease symptoms from arthritis. (A person with leukemia, however, would not be able to take enough of the herbal remedy to halt the disease.)

Investigating stem cells that give rise to cancer is an urgent new initiative, as is identifying stem-cell treatments that might end the disease process. Jordan and Guzman are among only a handful of stem cell biologists nationwide who are specifically studying cancer stem cells. In recent years, scientists have identified cancer stems cells in blood cancers and in brain and breast tumors – although the idea that cancer stems cells exist has been around for at least 40 years.

In the current study, the UR group began investigating Feverfew after other scientists showed that it prevented some skin cancers in animal models. Intrigued by the plant’s anti-tumor activities, the UR team analyzed how a concentrated form of parthenolide would act on the most primitive types of acute myelogenous leukemia cells, chronic myelogenous leukemia cells and normal cells. In laboratory experiments, they also compared how human leukemia stem cells reacted to parthenolide, versus a common chemotherapy drug called cytarabine. The result: parthenolide selectively killed the leukemia cells while sparing the normal cells better than cytarabine.

Scientists believe parthenolide might also make cancer more sensitive to other anti-tumor agents. And, the UR group was able to demonstrate the molecular pathways that allow parthenolide to cause apoptosis, or cancer cell death, increasing the chances of developing a new therapy. Jordan is director of the Translational Research for Hematologic Malignancies program at the Wilmot Cancer Center and associate professor of Medicine and Biomedical Genetics. Guzman is senior instructor of hematology/oncology.

Other co-investigators include: Randall Rossi, associate scientist; Lilliana Karnischky, laboratory technician; Xiaojie Li, technical associate; Derick Peterson, Ph.D., assistant professor of biostatistics, and Dianna Howard, M.D., at the University of Kentucky Medical Center.

Leslie White | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>