Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant derivative attacks the roots of leukemia

23.02.2005


A daisy-like plant known as Feverfew or Bachelor’s Button, found in gardens across North America, is the source of an agent that kills human leukemia stem cells like no other single therapy, scientists at the University of Rochester Medical Center’s James P. Wilmot Cancer Center have discovered. Their investigation is reported in the online edition of the journal, Blood.

It will take months before a useable, pharmaceutical compound can be made from parthenolide, the main component in Feverfew. However, UR stem cell expert Craig T. Jordan, Ph.D., and Monica L. Guzman, Ph.D., lead author on the Blood paper, say their group is collaborating with University of Kentucky chemists, who have identified a water-soluble molecule that has the same properties as parthenolide.

The National Cancer Institute has accepted this work into its rapid access program, which aims to move experimental drugs from the laboratory to human clinical trials as quickly as possible. "This research is a very important step in setting the stage for future development of a new therapy for leukemia," says Jordan. "We have proof that we can kill leukemia stem cells with this type of agent, and that is good news." Parthenolide is the first single agent known to act on myeloid leukemia at the stem-cell level, which is significant because current cancer treatments do not strike deep enough to kill mutant cells where the malignancy is born.



In other words, even the most progressive leukemia treatment, a relatively new drug called Gleevec, is effective only to a degree. It does not reach the stem cells, so "you’re pulling the weed without getting to the root," Jordan says. Feverfew has been used for centuries as an herbal remedy to reduce fevers and inflammation, to prevent migraine headaches, and to ease symptoms from arthritis. (A person with leukemia, however, would not be able to take enough of the herbal remedy to halt the disease.)

Investigating stem cells that give rise to cancer is an urgent new initiative, as is identifying stem-cell treatments that might end the disease process. Jordan and Guzman are among only a handful of stem cell biologists nationwide who are specifically studying cancer stem cells. In recent years, scientists have identified cancer stems cells in blood cancers and in brain and breast tumors – although the idea that cancer stems cells exist has been around for at least 40 years.

In the current study, the UR group began investigating Feverfew after other scientists showed that it prevented some skin cancers in animal models. Intrigued by the plant’s anti-tumor activities, the UR team analyzed how a concentrated form of parthenolide would act on the most primitive types of acute myelogenous leukemia cells, chronic myelogenous leukemia cells and normal cells. In laboratory experiments, they also compared how human leukemia stem cells reacted to parthenolide, versus a common chemotherapy drug called cytarabine. The result: parthenolide selectively killed the leukemia cells while sparing the normal cells better than cytarabine.

Scientists believe parthenolide might also make cancer more sensitive to other anti-tumor agents. And, the UR group was able to demonstrate the molecular pathways that allow parthenolide to cause apoptosis, or cancer cell death, increasing the chances of developing a new therapy. Jordan is director of the Translational Research for Hematologic Malignancies program at the Wilmot Cancer Center and associate professor of Medicine and Biomedical Genetics. Guzman is senior instructor of hematology/oncology.

Other co-investigators include: Randall Rossi, associate scientist; Lilliana Karnischky, laboratory technician; Xiaojie Li, technical associate; Derick Peterson, Ph.D., assistant professor of biostatistics, and Dianna Howard, M.D., at the University of Kentucky Medical Center.

Leslie White | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>