Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists replicate hepatitis C virus in laboratory

23.02.2005


New in vitro model system will allow study of therapeutics and virus life cycle



For the first time, scientists have replicated hepatitis C virus (HCV) in the laboratory. The ability to replicate HCV in cell culture will allow researchers to better study the life cycle and biology of this virus and to test potential antiviral compounds, which may lead to new therapies for the liver disease that results from infection with HCV. Scientists at the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), one of the National Institutes of Health (NIH), conducted the study, which appears in the Feb. 15, 2005 issue of Proceedings of the National Academy of Sciences (PNAS).

"Until recently, research on this infectious disease has suffered from the lack of a robust in vitro model system," says T. Jake Liang, M.D., Chief of the Liver Diseases Branch of the NIDDK and co-author of the study. "Our model system produced viral particles that have all the properties of the whole virus. This evidence together with an analysis of the replicated viral RNA supports a conclusion of viral replication and production."


The NIDDK group used a strain of HCV that would have applications to the greatest number of people – genotype 1, the major type of HCV of human infections worldwide and the type most resistant to current therapies. They constructed an HCV replica using a DNA copy of the original HCV single-strand RNA genome. They placed the DNA copy between two ribozymes, RNA molecules that have enzymatic function and can cleave RNA sequence at specific locations. These two ribozymes were designed to generate the correct ends of the HCV genome and to act as start and stop buttons to gene activity. The construct was "naked," meaning that it contained only nucleic acids, the genetic material of the virus, and did not have the HCV viral envelope, a protective shell of lipids and proteins that surrounds the viral RNA in fully-formed HCV. The naked HCV construct was then placed into human liver cells in a cell culture medium.

The NIDDK scientists found evidence of HCV proteins and HCV RNA within the human liver cells in the culture. Electron microscopy showed evidence of high levels of viral particles resembling fully-formed HCV outside of the human liver cells in the culture medium. The researchers believe that the HCV construct contained within the human liver cells behaved like a true HCV infection by producing fully formed copies of the virus and releasing them from the host cell into the culture medium. Further testing is needed before the researchers can determine if the viral particles produced in this system are in fact infectious. Also, this system only represents the tail end of the viral life cycle – viral replication, assembly and release from host cells. Another HCV model system is needed to show the beginning stages of the viral life cycle – viral entry into host cells and viral activity in the host cell before replication.

"With this cell-based system, we can screen compounds with a cell-based assay to look for inhibitors of virus replication," says Liang. "We can also apply this technique to develop model systems for other similar viruses."

HCV is a small, enveloped, single-stranded RNA virus in the family Flaviviridae. HCV is a major cause of liver disease in the United States and the world. One in a series of hepatitis viruses, HCV accounts for about 15 percent of acute hepatitis cases, 60 to 70 percent of chronic hepatitis cases, and up to 50 percent of cases of cirrhosis, end-stage liver disease, and liver cancer. Almost 4 million Americans, or 1.8 percent of the U.S. population, have antibodies to HCV indicating ongoing or previous infection with the virus. Approximately 10,000 to 12,000 deaths each year in the United States are due to HCV.

Marcia Vital | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>