Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid, new test develped for inherited immune deficiency

23.02.2005


Newborn screening could detect bubble boy illness early, save lives



Researchers at the National Human Genome Research Institute (NHGRI), part of the National Institutes of Health (NIH), have developed a new laboratory method that rapidly identifies babies born with inherited forms of severe immune deficiency. The new genetic test, which still must be validated before widespread use, could someday be added to the panel of tests that already screen newborns for a variety of disorders.

The test identifies babies born with Severe Combined Immunodeficiency, or SCID, an illness in which the infant fails to develop a normal immune system. SCID babies can be infected by a wide range of viruses, bacteria and fungi that are normally controlled by a healthy baby’s immune system. If undetected and untreated, SCID typically leads to death before the baby’s first birthday.


Developed in the NHGRI Division of Intramural Research (DIR), the new test can use the same dried blood samples already collected from newborns and would provide the first accurate, high-throughput screen for immune deficiencies. Prior efforts to identify this disorder by counting white blood cells in newborns proved unreliable and expensive.

"This new laboratory technique is an excellent example of how increasingly sophisticated genetic tools can be applied to important public health problems," said NHGRI Scientific Director Eric D. Green, M.D., Ph.D. "Here we have a chance to catch an illness early when treatment is most effective. This new approach provides a rapid, accurate indication of a possible immune problem immediately after birth while the infant is protected by the mother’s antibodies still circulating in the baby’s blood."

If SCID is diagnosed in time, there are effective treatments. One form of the disease can be treated with an injectable medication. All forms of the disorder can be cured through the transplantation of bone marrow if a matching donor can be identified. And finally, SCID may be treated through human gene therapy in which a normal copy of the defective gene may be inserted into the patient’s own blood-forming cells. The first gene therapy experiments in history were carried out at NIH in 1990 in two young Ohio girls with SCID. The patients are alive, continue to do well and are involved in ongoing research at NHGRI.

The sooner a child is diagnosed, the sooner treatment can begin and the more likely it is to be effective. "Too many babies are diagnosed too late," said Jennifer M. Puck, M.D., chief of NHGRI’s Genetics and Molecular Biology Branch. "And some babies develop fatal infections before their condition is recognized. Recent research shows that bone marrow transplants in the first three months of life work better than transplants at a later age. So it is critical to identify affected children immediately after birth. Since the babies lack overt clinical symptoms for some time, a molecular test is a good approach."

The newly developed screening tool exploits a detailed understanding of the maturation of T cells, one of the essential types of white blood cells that make up the immune system. Without a sufficient number of normal T cells, the immune system doesn’t work, just as when the AIDS virus wipes out the same population of immune cells. During normal development, an individual T cell rearranges the gene that produces a so-called antigen receptor on the surface of the cell. The antigen receptor allows the T cell to identify an infectious agent and launch a defensive attack to kill the invader.

While rearranging the receptor gene, the maturing T cell produces a bit of leftover genetic material that forms a ring structure within the cell. Using a quantitative laboratory technique that measures the number of these rings within a blood sample, Dr. Puck’s group was able to differentiate normal infants from those with SCID. In dried blood samples from healthy babies, the team was able to detect an average of 1,000 of these genetic rings; children with SCID had 30 or fewer. "That’s a big difference," she said.

The development of the new test is described in the February issue of The Journal of Allergy and Clinical Immunology. Although the availability of the test raises the question of whether states should begin using it on all newborns, Dr. Puck concluded that the new test is not quite ready for widespread use. It must first be validated.

"Our false positive rate was about 1.5 percent, which is too high to be practical for screening," Dr. Puck said. A baby with a positive test would need to be evaluated to see if he or she was actually sick; a false positive rate of 1.5 percent would mean three out of every 200 newborns would need further testing. "That would be a lot of babies going back to the doctor and a lot of worried parents. We are now working on ways to decrease the number of false positives."

To validate the test, Dr. Puck’s group is collaborating with the newborn screening laboratory of the Maryland Department of Health and Mental Hygiene in Baltimore. The Maryland state lab is supplying some 5,000 blood samples already collected on newborns for the NHGRI lab to test. Although these samples are likely to be normal, they will be used to refine the laboratory procedures and establish quality control. Once the high-throughput screening approach has been validated with this large set of existing samples from Maryland, the NHGRI lab plans to begin prospectively testing newborns from the state. Other state testing laboratories also have expressed interest in participating in the prospective studies.

Although considered a rare disease, SCID is best known to the public from media accounts – and a made-for-TV movie starring John Travolta -- about David, the Bubble Boy, a Texas boy who spent his entire life in a germ-free environment, ultimately dying after a failed bone marrow transplant in early adolescence. No one knows exactly how many babies are born with SCID. Current estimates suggest that 1 in every 50,000 to 100,000 births may be affected, indicating SCID may be about as common as some of the inherited illnesses for which states currently screen all newborns. Experts suspect that many children with SCID die from infections before being diagnosed, so the true incidence of the disease may be even higher. Newborn screening may reveal the true incidence.

Because the new test is still experimental, it is not available to the general public and the cost has yet to be determined. NHGRI is one of the 27 institutes and centers at the National Institutes of Health, which is an agency of the Department of Health and Human Services. The NHGRI Division of Intramural Research develops and implements technology to understand, diagnose and treat genomic and genetic diseases. Additional information about NHGRI can be found at www.genome.gov

Geoff Spencer | EurekAlert!
Further information:
http://www.nih.gov
http://www.genome.gov

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>