Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibody that neutralizes most HIV strains described by scientists

23.02.2005


A group of scientists from The Scripps Research Institute and several other institutions has solved the structure of a rare human antibody that broadly neutralizes human immunodeficiency virus (HIV), which causes acquired immunodeficiency syndrome (AIDS).

Neutralizing antibodies are soluble proteins that are secreted by adaptive immune cells into the bloodstream, following exposure to a virus. In the bloodstream, antibodies bind to viral particles in circulation, prevent them from infecting human cells, and lead to the viral particles’ destruction­thus neutralizing them.

Because neutralizing antibodies attack the virus before it enters cells, they can prevent HIV infection if they are present prior to exposure to the virus. An HIV vaccine would seek to elicit these neutralizing antibodies -- just as existing vaccines against diseases such as measles, polio, hepatitis B, and hepatitis A elicit neutralizing antibodies against those viruses.



However, this is easier said than done. The body makes many antibodies against HIV, but they are almost always unable to neutralize the virus. Nonetheless, the immune systems of some patients with HIV have beaten the odds and have produced effective neutralizing antibodies. The structure of one of these, called 4E10, is described in the latest issue of the journal Immunity.

"This antibody is very broadly active," says Scripps Research Professor Dennis Burton, Ph.D., who led the research with Scripps Research Professor Ian Wilson, D.Phil. "It neutralized nearly 100 different viral strains of HIV from all over the world. [During tests in the laboratory], every one of them was neutralized."

4E10 was isolated from an HIV-positive individual about a decade ago by Burton and Wilson’s collaborator Hermann Katinger, a doctor at the Institute for Applied Microbiology of the University of Agriculture in Vienna, Austria, and one of the authors of the paper.

Significantly, the structure shows what an effective HIV-neutralizing antibody can look like. 4E10 targets an area on the HIV surface protein GP41 that the virus uses to fuse its membrane to the membrane of a human cell it is infecting. The target area is unusually close to the virus’s membrane surface, and the antibody has an unusual adaptation that might help it stick to the virus close to the membrane­a "finger" of amino acids with a propensity to dip down into the membrane and bring the antibody in contact with the target area.

Moreover, since the structure shows what the "epitope" looks like -- the area on the HIV surface to which 4E10 binds -- this work gives scientists insight into how to reverse-engineer a component of an HIV vaccine. The structure of this antibody could be used as a template to design an epitope mimic that would stimulate the human immune system to make 4E10 or similar broadly neutralizing antibodies against HIV.

"Once one knows what the epitope is, one can design mimics of it much more easily," says Wilson, who is an investigator in The Skaggs Institute for Chemical Biology at The Scripps Research Institute.

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu
http://www.immunity.com

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>