Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sussex scientist makes MRSA treatment breakthrough with synthetic antibiotic

22.02.2005


A groundbreaking new treatment to combat the hospital killer bug MRSA, which is estimated to cause up to 5,000 deaths a year in Britain, is being developed by a University of Sussex scientist.



Philip Parsons, a professor of organic chemistry, has devised a simple "one-pot" method to make a synthetic version of a natural antibiotic, lactonamycin, which could be used to treat infected patients. He has now received a £280,000 grant from the Engineering and Physical Sciences Research Council towards developing a series of lactonamycin-like substances.

Professor Parsons explains: "The most important thing hospitals can do to fight MRSA is to improve ward cleanliness. But we still need new antibiotics to combat the bug when it arises. "We know that lactonamycin, a naturally occurring antibiotic, can kill MRSA. But it is has not been available as a drug therapy, partly due to its novelty and complexity. We are looking at a simple way to synthesise the antibiotic and its compounds, which could also be highly effective in the fight against infection."


The search for new antibiotics active against "super bugs" such as MRSA is of paramount importance because of the increasing problems faced by hospitals in treating drug-resistant bacterial infections. The latest Government figures estimate that up to 100,000 people catch an infection in UK hospitals every year, with the elderly and the very young most at risk of complications and death.

Research has shown that lactonamycin, an extract of the bacteria Streptomyces rishiriensis, is active against MRSA (methicillin-resistant Staphylococcus aureus).

Naturally occurring chemicals, such as lactonamycin, often have complex molecular structures and are difficult to synthesise because the process usually involves many chemical steps. Professor Parsons has discovered a "one-pot" method - known as cascade reaction - during which several reactions take place at once.

"This is a very exciting discovery," adds Professor Parsons. "It will be important not just for producing lactonamycin, but for making other compounds, natural products and drug substances more efficiently."

| alfa
Further information:
http://www.sussex.ac.uk

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

NASA'S OSIRIS-REx spacecraft slingshots past Earth

25.09.2017 | Physics and Astronomy

MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer

25.09.2017 | Health and Medicine

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>