Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes Against By-Product-Coking Industry

22.02.2005


How can workers be protected from detrimental production factors? Russian researchers have come to the conclusion that this can be done by a large number of actively working ribosomal genes.



Specialists of the Chair of Genetics, Kemerovo State University, have discovered that people with a large number of actively working ribosomal genes are found more frequently among workers of the by-product coke plant than among ordinary townsmen (ribosomal genes are responsible for the ribosome structure). According to the researchers, activity of ribosomal genes protects their possessors from detrimental production factors.

Listing detrimental factors of by-product coke plants is a long and tiresome effort. Multiple toxic and mutagenic chemical agents, noise, vibration and temperature difference are destructive for health.


Nevertheless, a lot of people have been working in such environment for more than 20 years and feeling well. What is the matter? It has turned out that the point is the number of actively working ribosomal genes. Human genome contains excess amount of these genes. “Redundant” genes simply do not work, the remaining ribosomal genes providing for normal vital activity of the cell and the organism. People differ in individual doses of working ribosomal genes, this difference being hereditary.

Ribosomal genes are placed compactly in certain sections of chromosomes. Upon special coloring by silver nitrate, the active genes zone is seen as a black spot. The larger and the brighter the spot is, the more working ribosomal genes are contained in it.

Genetics have examined several dozens of workers of different sex and age from the by-product coke plant – Kemerovo joint-stock company KOKS (“Coke”). Having produced chromosomal preparations from the cells of peripheral blood, genetics made sure that there are more people among workers of the plant with high dose of active genes than those among healthy donors who do not contact with occupational hazard.

Along with that, the workers whose record of service exceeds 10 years have larger amount of active copies of ribosomal genes than the background donors and workers with the record of service under 10 years.

The researchers suggest two hypotheses for explanation of this phenomenon. Firstly, inactive copies may be enabled after the lapse of many years of work in harmful conditions.

Secondly, mainly workers with initial large number of active copies can endure working at the plant for more than ten years, the others would simply leave. Apparently, higher activity of ribosomal genes helps their possessors to adapt to difficult conditions of the by-product-coking industry.

Indeed, such people are less sensitive to mutagens. The Kemerovo researchers have ascertained that the cells with higher level of chromosomal derangements are found less frequently with the workers possessing a large number of working ribosomal genes. According to the researchers’ opinion, there is dependence between genetic sensitivity to production factors and an individual dose of active ribosomal genes. Therefore, it is expedient to check activity of these genes with all applicants for job at the by-product coke plant.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>