Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research network: Artificial photosynthesis for future energy production

22.02.2005


Nature utilizes energy from the sun for its production. Some algae produce hydrogen from water with the help of solar energy. So why not imitate nature to extract renewable energy without harming the environment? The EU is now giving European research a boost by allocating €1.8 million to a new network to be led by Uppsala University.



Plant photosynthesis has long been studied with an eye to understanding its underlying mechanisms and then applying this knowledge to the production of energy for the needs of society. Today, hydrogen is regarded as one of the most promising forms of fuel for the future. A new European network, SOLAR-H, has now been established to bring together research competence from different fields. “The network consists of laboratories that lead the world in a broad spectrum of fields from molecular biology, biochemistry, and synthetic chemistry to physical chemistry,” says Professor Stenbjörn Styring at the Section for Biomimetics at Uppsala University.

He recently moved to Uppsala from Lund University, together with his research team, and he will now be coordinating the new network, which was initiated in Sweden and the Consortium for Artificial Photosynthesis. With the move to Uppsala the Consortium will now be able to gather most of its research at one university, having previously been split up at three different ones. Uppsala already had Leif Hammarström’s team in chemical physics and Peter Lindblad’s group in physiological botany. A further team has now been assembled around synthetic chemists that recently came to Uppsala from Stockholm University in connection with Styring’s move.


“We now have about 40 individuals gathered at Uppsala and are full of enthusiasm about the future,” he adds.

With its breadth, the Uppsala team will be able to apply many different approaches simultaneously. Lindblad’s team is studying living cyanobacteria (a kind of alga) and is altering their metabolism at the genetic level so they produce hydrogen without absorbing it at the same time. Styring heads a team that is studying the mechanisms of natural photosynthesis at the biochemical level, while a third team led by a group of young scientists are busy synthesizing the molecule complexes necessary to imitate the natural process. In Leif Hammarström’s team the rapid and complex reactions can be studied using a series of different physical methods of measurement. “We think artificial photosynthesis has tremendous potential, even though it remains to be demonstrated. It’s a scientific challenge, and if we succeed, the market will be gigantic.”

Other laboratories in SOLAR-H are in France, Germany, Hungary, the Netherlands, and Switzerland. Read more at:

FACTS: Framework Programs are the primary source of support for elite research and technological development in the EU. The overall budget amounts to €19 billion and is being used to fund projects throughout the EU during the period 2002-2006.

For more information please contact Stenbjörn Styring at phone: +46 18-471 6580, cell phone: +46 70-572 2364, or e-mail stenbjorn.styring@fki.uu.se.

Anneli Waara | alfa
Further information:
http://www.uu.se

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>